An interindividual iterative consensus model for fuzzy preference relations

Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2019-08, Vol.34 (8), p.1864-1888
Hauptverfasser: Xu, Yejun, Gao, Pengqun, Martínez, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1888
container_issue 8
container_start_page 1864
container_title International journal of intelligent systems
container_volume 34
creator Xu, Yejun
Gao, Pengqun
Martínez, Luis
description Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus model based on the deviation degree of two fuzzy preference relations (FPRs), in which a novel consistency index (CI) is defined to measure whether an FPR is of acceptable consistency. Additionally, an interindividual similarity index (ISI) is devised to measure the consensus degree of two FPRs. In the proposed consensus reaching process, ISI is also used to guide the two most incompatible decision‐makers (DMs) to modify their judgments. The proposed iterative consensus reaching algorithm is convergent, CI preservation. After that, a stationary vector method is adopted to determine DMs’ weights for the aggregation process based on DMs’ opinion transition probabilities. Finally, an illustrative example and comparative analysis is given to demonstrate the effectiveness of the proposed model.
doi_str_mv 10.1002/int.22122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2246703223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246703223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-5370ff22d44c80c86c688fef27d07c6595d1b4a359e2efd207d5c8557ca015a63</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKsL_0HAlYtp85hM0mUpvrDopoK7EJMbSJlmatKptL_e6Lh1dbnwnXvuOQhdUzKhhLBpiLsJY5SxEzSiZKYqSun7KRoRpepKUcnP0UXOa0IolbUYoed5xEUDKUQX9sH1psWhrGYX9oBtFzPE3Ge86Ry02HcJ-_54POBtAg8JogWcoC10IS_RmTdthqu_OUZv93erxWO1fH14WsyXleWcsUpwSbxnzNW1VcSqxjZKefBMOiJtI2bC0Y_acDEDBt4xIp2wSghpDaHCNHyMboa729R99pB3et31KRZLzVjdSFJceKFuB8qmLufyrt6msDHpoCnRP13pklv_dlXY6cB-hRYO_4P66WU1KL4B89NrfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246703223</pqid></control><display><type>article</type><title>An interindividual iterative consensus model for fuzzy preference relations</title><source>Access via Wiley Online Library</source><creator>Xu, Yejun ; Gao, Pengqun ; Martínez, Luis</creator><creatorcontrib>Xu, Yejun ; Gao, Pengqun ; Martínez, Luis</creatorcontrib><description>Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus model based on the deviation degree of two fuzzy preference relations (FPRs), in which a novel consistency index (CI) is defined to measure whether an FPR is of acceptable consistency. Additionally, an interindividual similarity index (ISI) is devised to measure the consensus degree of two FPRs. In the proposed consensus reaching process, ISI is also used to guide the two most incompatible decision‐makers (DMs) to modify their judgments. The proposed iterative consensus reaching algorithm is convergent, CI preservation. After that, a stationary vector method is adopted to determine DMs’ weights for the aggregation process based on DMs’ opinion transition probabilities. Finally, an illustrative example and comparative analysis is given to demonstrate the effectiveness of the proposed model.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22122</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Algorithms ; consensus reaching ; Consistency ; fuzzy preference relation ; group decision‐making ; Intelligent systems ; Iterative methods ; Judgments ; similarity ; Transition probabilities</subject><ispartof>International journal of intelligent systems, 2019-08, Vol.34 (8), p.1864-1888</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-5370ff22d44c80c86c688fef27d07c6595d1b4a359e2efd207d5c8557ca015a63</citedby><cites>FETCH-LOGICAL-c3322-5370ff22d44c80c86c688fef27d07c6595d1b4a359e2efd207d5c8557ca015a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22122$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22122$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Xu, Yejun</creatorcontrib><creatorcontrib>Gao, Pengqun</creatorcontrib><creatorcontrib>Martínez, Luis</creatorcontrib><title>An interindividual iterative consensus model for fuzzy preference relations</title><title>International journal of intelligent systems</title><description>Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus model based on the deviation degree of two fuzzy preference relations (FPRs), in which a novel consistency index (CI) is defined to measure whether an FPR is of acceptable consistency. Additionally, an interindividual similarity index (ISI) is devised to measure the consensus degree of two FPRs. In the proposed consensus reaching process, ISI is also used to guide the two most incompatible decision‐makers (DMs) to modify their judgments. The proposed iterative consensus reaching algorithm is convergent, CI preservation. After that, a stationary vector method is adopted to determine DMs’ weights for the aggregation process based on DMs’ opinion transition probabilities. Finally, an illustrative example and comparative analysis is given to demonstrate the effectiveness of the proposed model.</description><subject>Algorithms</subject><subject>consensus reaching</subject><subject>Consistency</subject><subject>fuzzy preference relation</subject><subject>group decision‐making</subject><subject>Intelligent systems</subject><subject>Iterative methods</subject><subject>Judgments</subject><subject>similarity</subject><subject>Transition probabilities</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKsL_0HAlYtp85hM0mUpvrDopoK7EJMbSJlmatKptL_e6Lh1dbnwnXvuOQhdUzKhhLBpiLsJY5SxEzSiZKYqSun7KRoRpepKUcnP0UXOa0IolbUYoed5xEUDKUQX9sH1psWhrGYX9oBtFzPE3Ge86Ry02HcJ-_54POBtAg8JogWcoC10IS_RmTdthqu_OUZv93erxWO1fH14WsyXleWcsUpwSbxnzNW1VcSqxjZKefBMOiJtI2bC0Y_acDEDBt4xIp2wSghpDaHCNHyMboa729R99pB3et31KRZLzVjdSFJceKFuB8qmLufyrt6msDHpoCnRP13pklv_dlXY6cB-hRYO_4P66WU1KL4B89NrfQ</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Xu, Yejun</creator><creator>Gao, Pengqun</creator><creator>Martínez, Luis</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201908</creationdate><title>An interindividual iterative consensus model for fuzzy preference relations</title><author>Xu, Yejun ; Gao, Pengqun ; Martínez, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-5370ff22d44c80c86c688fef27d07c6595d1b4a359e2efd207d5c8557ca015a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>consensus reaching</topic><topic>Consistency</topic><topic>fuzzy preference relation</topic><topic>group decision‐making</topic><topic>Intelligent systems</topic><topic>Iterative methods</topic><topic>Judgments</topic><topic>similarity</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yejun</creatorcontrib><creatorcontrib>Gao, Pengqun</creatorcontrib><creatorcontrib>Martínez, Luis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yejun</au><au>Gao, Pengqun</au><au>Martínez, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interindividual iterative consensus model for fuzzy preference relations</atitle><jtitle>International journal of intelligent systems</jtitle><date>2019-08</date><risdate>2019</risdate><volume>34</volume><issue>8</issue><spage>1864</spage><epage>1888</epage><pages>1864-1888</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus model based on the deviation degree of two fuzzy preference relations (FPRs), in which a novel consistency index (CI) is defined to measure whether an FPR is of acceptable consistency. Additionally, an interindividual similarity index (ISI) is devised to measure the consensus degree of two FPRs. In the proposed consensus reaching process, ISI is also used to guide the two most incompatible decision‐makers (DMs) to modify their judgments. The proposed iterative consensus reaching algorithm is convergent, CI preservation. After that, a stationary vector method is adopted to determine DMs’ weights for the aggregation process based on DMs’ opinion transition probabilities. Finally, an illustrative example and comparative analysis is given to demonstrate the effectiveness of the proposed model.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22122</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2019-08, Vol.34 (8), p.1864-1888
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_2246703223
source Access via Wiley Online Library
subjects Algorithms
consensus reaching
Consistency
fuzzy preference relation
group decision‐making
Intelligent systems
Iterative methods
Judgments
similarity
Transition probabilities
title An interindividual iterative consensus model for fuzzy preference relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interindividual%20iterative%20consensus%20model%20for%20fuzzy%20preference%20relations&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Xu,%20Yejun&rft.date=2019-08&rft.volume=34&rft.issue=8&rft.spage=1864&rft.epage=1888&rft.pages=1864-1888&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22122&rft_dat=%3Cproquest_cross%3E2246703223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246703223&rft_id=info:pmid/&rfr_iscdi=true