An interindividual iterative consensus model for fuzzy preference relations
Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2019-08, Vol.34 (8), p.1864-1888 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1888 |
---|---|
container_issue | 8 |
container_start_page | 1864 |
container_title | International journal of intelligent systems |
container_volume | 34 |
creator | Xu, Yejun Gao, Pengqun Martínez, Luis |
description | Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus model based on the deviation degree of two fuzzy preference relations (FPRs), in which a novel consistency index (CI) is defined to measure whether an FPR is of acceptable consistency. Additionally, an interindividual similarity index (ISI) is devised to measure the consensus degree of two FPRs. In the proposed consensus reaching process, ISI is also used to guide the two most incompatible decision‐makers (DMs) to modify their judgments. The proposed iterative consensus reaching algorithm is convergent, CI preservation. After that, a stationary vector method is adopted to determine DMs’ weights for the aggregation process based on DMs’ opinion transition probabilities. Finally, an illustrative example and comparative analysis is given to demonstrate the effectiveness of the proposed model. |
doi_str_mv | 10.1002/int.22122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2246703223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246703223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-5370ff22d44c80c86c688fef27d07c6595d1b4a359e2efd207d5c8557ca015a63</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKsL_0HAlYtp85hM0mUpvrDopoK7EJMbSJlmatKptL_e6Lh1dbnwnXvuOQhdUzKhhLBpiLsJY5SxEzSiZKYqSun7KRoRpepKUcnP0UXOa0IolbUYoed5xEUDKUQX9sH1psWhrGYX9oBtFzPE3Ge86Ry02HcJ-_54POBtAg8JogWcoC10IS_RmTdthqu_OUZv93erxWO1fH14WsyXleWcsUpwSbxnzNW1VcSqxjZKefBMOiJtI2bC0Y_acDEDBt4xIp2wSghpDaHCNHyMboa729R99pB3et31KRZLzVjdSFJceKFuB8qmLufyrt6msDHpoCnRP13pklv_dlXY6cB-hRYO_4P66WU1KL4B89NrfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246703223</pqid></control><display><type>article</type><title>An interindividual iterative consensus model for fuzzy preference relations</title><source>Access via Wiley Online Library</source><creator>Xu, Yejun ; Gao, Pengqun ; Martínez, Luis</creator><creatorcontrib>Xu, Yejun ; Gao, Pengqun ; Martínez, Luis</creatorcontrib><description>Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus model based on the deviation degree of two fuzzy preference relations (FPRs), in which a novel consistency index (CI) is defined to measure whether an FPR is of acceptable consistency. Additionally, an interindividual similarity index (ISI) is devised to measure the consensus degree of two FPRs. In the proposed consensus reaching process, ISI is also used to guide the two most incompatible decision‐makers (DMs) to modify their judgments. The proposed iterative consensus reaching algorithm is convergent, CI preservation. After that, a stationary vector method is adopted to determine DMs’ weights for the aggregation process based on DMs’ opinion transition probabilities. Finally, an illustrative example and comparative analysis is given to demonstrate the effectiveness of the proposed model.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22122</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Algorithms ; consensus reaching ; Consistency ; fuzzy preference relation ; group decision‐making ; Intelligent systems ; Iterative methods ; Judgments ; similarity ; Transition probabilities</subject><ispartof>International journal of intelligent systems, 2019-08, Vol.34 (8), p.1864-1888</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-5370ff22d44c80c86c688fef27d07c6595d1b4a359e2efd207d5c8557ca015a63</citedby><cites>FETCH-LOGICAL-c3322-5370ff22d44c80c86c688fef27d07c6595d1b4a359e2efd207d5c8557ca015a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22122$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22122$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Xu, Yejun</creatorcontrib><creatorcontrib>Gao, Pengqun</creatorcontrib><creatorcontrib>Martínez, Luis</creatorcontrib><title>An interindividual iterative consensus model for fuzzy preference relations</title><title>International journal of intelligent systems</title><description>Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus model based on the deviation degree of two fuzzy preference relations (FPRs), in which a novel consistency index (CI) is defined to measure whether an FPR is of acceptable consistency. Additionally, an interindividual similarity index (ISI) is devised to measure the consensus degree of two FPRs. In the proposed consensus reaching process, ISI is also used to guide the two most incompatible decision‐makers (DMs) to modify their judgments. The proposed iterative consensus reaching algorithm is convergent, CI preservation. After that, a stationary vector method is adopted to determine DMs’ weights for the aggregation process based on DMs’ opinion transition probabilities. Finally, an illustrative example and comparative analysis is given to demonstrate the effectiveness of the proposed model.</description><subject>Algorithms</subject><subject>consensus reaching</subject><subject>Consistency</subject><subject>fuzzy preference relation</subject><subject>group decision‐making</subject><subject>Intelligent systems</subject><subject>Iterative methods</subject><subject>Judgments</subject><subject>similarity</subject><subject>Transition probabilities</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKsL_0HAlYtp85hM0mUpvrDopoK7EJMbSJlmatKptL_e6Lh1dbnwnXvuOQhdUzKhhLBpiLsJY5SxEzSiZKYqSun7KRoRpepKUcnP0UXOa0IolbUYoed5xEUDKUQX9sH1psWhrGYX9oBtFzPE3Ge86Ry02HcJ-_54POBtAg8JogWcoC10IS_RmTdthqu_OUZv93erxWO1fH14WsyXleWcsUpwSbxnzNW1VcSqxjZKefBMOiJtI2bC0Y_acDEDBt4xIp2wSghpDaHCNHyMboa729R99pB3et31KRZLzVjdSFJceKFuB8qmLufyrt6msDHpoCnRP13pklv_dlXY6cB-hRYO_4P66WU1KL4B89NrfQ</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Xu, Yejun</creator><creator>Gao, Pengqun</creator><creator>Martínez, Luis</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201908</creationdate><title>An interindividual iterative consensus model for fuzzy preference relations</title><author>Xu, Yejun ; Gao, Pengqun ; Martínez, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-5370ff22d44c80c86c688fef27d07c6595d1b4a359e2efd207d5c8557ca015a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>consensus reaching</topic><topic>Consistency</topic><topic>fuzzy preference relation</topic><topic>group decision‐making</topic><topic>Intelligent systems</topic><topic>Iterative methods</topic><topic>Judgments</topic><topic>similarity</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yejun</creatorcontrib><creatorcontrib>Gao, Pengqun</creatorcontrib><creatorcontrib>Martínez, Luis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yejun</au><au>Gao, Pengqun</au><au>Martínez, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interindividual iterative consensus model for fuzzy preference relations</atitle><jtitle>International journal of intelligent systems</jtitle><date>2019-08</date><risdate>2019</risdate><volume>34</volume><issue>8</issue><spage>1864</spage><epage>1888</epage><pages>1864-1888</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Consensus reaching models are widely used to derive a representative solution in group decision‐making problems. Current models present limitations regarding the achievement of the agreement and keeping enough consistency for achieving valid solutions. Therefore, this paper proposed a new consensus model based on the deviation degree of two fuzzy preference relations (FPRs), in which a novel consistency index (CI) is defined to measure whether an FPR is of acceptable consistency. Additionally, an interindividual similarity index (ISI) is devised to measure the consensus degree of two FPRs. In the proposed consensus reaching process, ISI is also used to guide the two most incompatible decision‐makers (DMs) to modify their judgments. The proposed iterative consensus reaching algorithm is convergent, CI preservation. After that, a stationary vector method is adopted to determine DMs’ weights for the aggregation process based on DMs’ opinion transition probabilities. Finally, an illustrative example and comparative analysis is given to demonstrate the effectiveness of the proposed model.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22122</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-8173 |
ispartof | International journal of intelligent systems, 2019-08, Vol.34 (8), p.1864-1888 |
issn | 0884-8173 1098-111X |
language | eng |
recordid | cdi_proquest_journals_2246703223 |
source | Access via Wiley Online Library |
subjects | Algorithms consensus reaching Consistency fuzzy preference relation group decision‐making Intelligent systems Iterative methods Judgments similarity Transition probabilities |
title | An interindividual iterative consensus model for fuzzy preference relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interindividual%20iterative%20consensus%20model%20for%20fuzzy%20preference%20relations&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Xu,%20Yejun&rft.date=2019-08&rft.volume=34&rft.issue=8&rft.spage=1864&rft.epage=1888&rft.pages=1864-1888&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22122&rft_dat=%3Cproquest_cross%3E2246703223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246703223&rft_id=info:pmid/&rfr_iscdi=true |