Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework
In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming princi...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2019-11, Vol.183 (2), p.422-439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 439 |
---|---|
container_issue | 2 |
container_start_page | 422 |
container_title | Journal of optimization theory and applications |
container_volume | 183 |
creator | Li, Hanwu Wang, Falei |
description | In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–Isaac equation. |
doi_str_mv | 10.1007/s10957-019-01546-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2246544374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246544374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9c3e693d5aafa20ff188655b873e441337061c006970331d399f80105e2a01953</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA8-rk32ZzlNKqUKhQPYdsmrVbt5s1Sal-e1MrePMwzGF-7w3vIXRN4JYAyLtIQAlZAFF5BC8LdoJGREhW0EpWp2gEQGnBKFPn6CLGDQCoSvIR0svk7drE1Fq8GFK7NR2e-D4F3-Hn4OvObfG-TWu8qGMytnOHa0zBtH2KuO3xcld3be9MwNPPwdlkUut7PAtm6_Y-vF-is8Z00V397jF6nU1fJo_FfPHwNLmfF5ZKSIWyzJWKrYQxjaHQNKSqSiHqSjLHOWFMQkksQKkkMEZWTKmmAgLCUZNDCzZGN0ffIfiPnYtJb_wu9PmlppSXgnMmeabokbLBxxhco4eQI4cvTUAfitTHInX21D9FapZF7CiKGe7fXPiz_kf1DdiNdZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246544374</pqid></control><display><type>article</type><title>Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Hanwu ; Wang, Falei</creator><creatorcontrib>Li, Hanwu ; Wang, Falei</creatorcontrib><description>In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–Isaac equation.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-019-01546-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Differential equations ; Dynamic programming ; Engineering ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2019-11, Vol.183 (2), p.422-439</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Optimization Theory and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9c3e693d5aafa20ff188655b873e441337061c006970331d399f80105e2a01953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-019-01546-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-019-01546-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Li, Hanwu</creatorcontrib><creatorcontrib>Wang, Falei</creatorcontrib><title>Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–Isaac equation.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Differential equations</subject><subject>Dynamic programming</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPA8-rk32ZzlNKqUKhQPYdsmrVbt5s1Sal-e1MrePMwzGF-7w3vIXRN4JYAyLtIQAlZAFF5BC8LdoJGREhW0EpWp2gEQGnBKFPn6CLGDQCoSvIR0svk7drE1Fq8GFK7NR2e-D4F3-Hn4OvObfG-TWu8qGMytnOHa0zBtH2KuO3xcld3be9MwNPPwdlkUut7PAtm6_Y-vF-is8Z00V397jF6nU1fJo_FfPHwNLmfF5ZKSIWyzJWKrYQxjaHQNKSqSiHqSjLHOWFMQkksQKkkMEZWTKmmAgLCUZNDCzZGN0ffIfiPnYtJb_wu9PmlppSXgnMmeabokbLBxxhco4eQI4cvTUAfitTHInX21D9FapZF7CiKGe7fXPiz_kf1DdiNdZs</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Li, Hanwu</creator><creator>Wang, Falei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20191101</creationdate><title>Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework</title><author>Li, Hanwu ; Wang, Falei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9c3e693d5aafa20ff188655b873e441337061c006970331d399f80105e2a01953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Differential equations</topic><topic>Dynamic programming</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hanwu</creatorcontrib><creatorcontrib>Wang, Falei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hanwu</au><au>Wang, Falei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>183</volume><issue>2</issue><spage>422</spage><epage>439</epage><pages>422-439</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–Isaac equation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-019-01546-3</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2019-11, Vol.183 (2), p.422-439 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2246544374 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Differential equations Dynamic programming Engineering Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimal control Optimization Theory of Computation |
title | Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Optimal%20Control%20Problem%20with%20Obstacle%20Constraints%20in%20Sublinear%20Expectation%20Framework&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Li,%20Hanwu&rft.date=2019-11-01&rft.volume=183&rft.issue=2&rft.spage=422&rft.epage=439&rft.pages=422-439&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-019-01546-3&rft_dat=%3Cproquest_cross%3E2246544374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246544374&rft_id=info:pmid/&rfr_iscdi=true |