Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework

In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming princi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2019-11, Vol.183 (2), p.422-439
Hauptverfasser: Li, Hanwu, Wang, Falei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 439
container_issue 2
container_start_page 422
container_title Journal of optimization theory and applications
container_volume 183
creator Li, Hanwu
Wang, Falei
description In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–Isaac equation.
doi_str_mv 10.1007/s10957-019-01546-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2246544374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246544374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9c3e693d5aafa20ff188655b873e441337061c006970331d399f80105e2a01953</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA8-rk32ZzlNKqUKhQPYdsmrVbt5s1Sal-e1MrePMwzGF-7w3vIXRN4JYAyLtIQAlZAFF5BC8LdoJGREhW0EpWp2gEQGnBKFPn6CLGDQCoSvIR0svk7drE1Fq8GFK7NR2e-D4F3-Hn4OvObfG-TWu8qGMytnOHa0zBtH2KuO3xcld3be9MwNPPwdlkUut7PAtm6_Y-vF-is8Z00V397jF6nU1fJo_FfPHwNLmfF5ZKSIWyzJWKrYQxjaHQNKSqSiHqSjLHOWFMQkksQKkkMEZWTKmmAgLCUZNDCzZGN0ffIfiPnYtJb_wu9PmlppSXgnMmeabokbLBxxhco4eQI4cvTUAfitTHInX21D9FapZF7CiKGe7fXPiz_kf1DdiNdZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246544374</pqid></control><display><type>article</type><title>Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Hanwu ; Wang, Falei</creator><creatorcontrib>Li, Hanwu ; Wang, Falei</creatorcontrib><description>In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–Isaac equation.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-019-01546-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Differential equations ; Dynamic programming ; Engineering ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2019-11, Vol.183 (2), p.422-439</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Optimization Theory and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9c3e693d5aafa20ff188655b873e441337061c006970331d399f80105e2a01953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-019-01546-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-019-01546-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Li, Hanwu</creatorcontrib><creatorcontrib>Wang, Falei</creatorcontrib><title>Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–Isaac equation.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Differential equations</subject><subject>Dynamic programming</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPA8-rk32ZzlNKqUKhQPYdsmrVbt5s1Sal-e1MrePMwzGF-7w3vIXRN4JYAyLtIQAlZAFF5BC8LdoJGREhW0EpWp2gEQGnBKFPn6CLGDQCoSvIR0svk7drE1Fq8GFK7NR2e-D4F3-Hn4OvObfG-TWu8qGMytnOHa0zBtH2KuO3xcld3be9MwNPPwdlkUut7PAtm6_Y-vF-is8Z00V397jF6nU1fJo_FfPHwNLmfF5ZKSIWyzJWKrYQxjaHQNKSqSiHqSjLHOWFMQkksQKkkMEZWTKmmAgLCUZNDCzZGN0ffIfiPnYtJb_wu9PmlppSXgnMmeabokbLBxxhco4eQI4cvTUAfitTHInX21D9FapZF7CiKGe7fXPiz_kf1DdiNdZs</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Li, Hanwu</creator><creator>Wang, Falei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20191101</creationdate><title>Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework</title><author>Li, Hanwu ; Wang, Falei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9c3e693d5aafa20ff188655b873e441337061c006970331d399f80105e2a01953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Differential equations</topic><topic>Dynamic programming</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hanwu</creatorcontrib><creatorcontrib>Wang, Falei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hanwu</au><au>Wang, Falei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>183</volume><issue>2</issue><spage>422</spage><epage>439</epage><pages>422-439</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, we consider a stochastic optimal control problem, in which the cost function is defined through a reflected backward stochastic differential equation in sublinear expectation framework. Besides, we study the regularity of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–Isaac equation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-019-01546-3</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2019-11, Vol.183 (2), p.422-439
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_journals_2246544374
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Differential equations
Dynamic programming
Engineering
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimal control
Optimization
Theory of Computation
title Stochastic Optimal Control Problem with Obstacle Constraints in Sublinear Expectation Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Optimal%20Control%20Problem%20with%20Obstacle%20Constraints%20in%20Sublinear%20Expectation%20Framework&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Li,%20Hanwu&rft.date=2019-11-01&rft.volume=183&rft.issue=2&rft.spage=422&rft.epage=439&rft.pages=422-439&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-019-01546-3&rft_dat=%3Cproquest_cross%3E2246544374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246544374&rft_id=info:pmid/&rfr_iscdi=true