Cyclic posets and triangulation clusters

Triangulated categories coming from cyclic posets were originally introduced by the authors in a previous paper as a generalization of the constructions of various triangulated categories with cluster structures. We give an overview, and then analyze “triangulation clusters” which are those correspo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2019-07, Vol.62 (7), p.1289-1316
Hauptverfasser: Igusa, Kiyoshi, Todorov, Gordana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1316
container_issue 7
container_start_page 1289
container_title Science China. Mathematics
container_volume 62
creator Igusa, Kiyoshi
Todorov, Gordana
description Triangulated categories coming from cyclic posets were originally introduced by the authors in a previous paper as a generalization of the constructions of various triangulated categories with cluster structures. We give an overview, and then analyze “triangulation clusters” which are those corresponding to topological triangulations of the 2-disk. Locally finite nontriangulation clusters give topological triangulations of the “cactus space” associated to the “cactus cyclic poset”.
doi_str_mv 10.1007/s11425-018-9507-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2246322026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2246322026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-76b78e8528f15e66bd8e5dee05a3c48d6f43f204a0b6a9e2dffb2f12ec0da6583</originalsourceid><addsrcrecordid>eNp1kEtLxDAQx4MouOh-AG8FL16ik8mzR1l8wYIXPYc0TZYutV2T9rDf3iwVPDmHmTn8H_Aj5IbBPQPQD5kxgZICM7SWoCk_IytmVE3LwvPyKy2oRsMvyTrnPZThNQjNV-Ruc_R956vDmMOUKze01ZQ6N-zm3k3dOFS-n_MUUr4mF9H1Oax_7xX5fH762LzS7fvL2-ZxSz0qM1GtGm2CkWgik0GppjVBtiGAdNwL06ooeEQQDhrl6oBtjA1GhsFD65Q0_IrcLrmHNH7PIU92P85pKJUWUSiOCKiKii0qn8acU4j2kLovl46WgT0xsQsTW5jYExPLiwcXTy7aYRfSX_L_ph_cWGM_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2246322026</pqid></control><display><type>article</type><title>Cyclic posets and triangulation clusters</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Igusa, Kiyoshi ; Todorov, Gordana</creator><creatorcontrib>Igusa, Kiyoshi ; Todorov, Gordana</creatorcontrib><description>Triangulated categories coming from cyclic posets were originally introduced by the authors in a previous paper as a generalization of the constructions of various triangulated categories with cluster structures. We give an overview, and then analyze “triangulation clusters” which are those corresponding to topological triangulations of the 2-disk. Locally finite nontriangulation clusters give topological triangulations of the “cactus space” associated to the “cactus cyclic poset”.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-018-9507-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Cluster analysis ; Mathematics ; Mathematics and Statistics ; Set theory ; Topology ; Triangulation</subject><ispartof>Science China. Mathematics, 2019-07, Vol.62 (7), p.1289-1316</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-76b78e8528f15e66bd8e5dee05a3c48d6f43f204a0b6a9e2dffb2f12ec0da6583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-018-9507-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-018-9507-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Igusa, Kiyoshi</creatorcontrib><creatorcontrib>Todorov, Gordana</creatorcontrib><title>Cyclic posets and triangulation clusters</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>Triangulated categories coming from cyclic posets were originally introduced by the authors in a previous paper as a generalization of the constructions of various triangulated categories with cluster structures. We give an overview, and then analyze “triangulation clusters” which are those corresponding to topological triangulations of the 2-disk. Locally finite nontriangulation clusters give topological triangulations of the “cactus space” associated to the “cactus cyclic poset”.</description><subject>Applications of Mathematics</subject><subject>Cluster analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Set theory</subject><subject>Topology</subject><subject>Triangulation</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAQx4MouOh-AG8FL16ik8mzR1l8wYIXPYc0TZYutV2T9rDf3iwVPDmHmTn8H_Aj5IbBPQPQD5kxgZICM7SWoCk_IytmVE3LwvPyKy2oRsMvyTrnPZThNQjNV-Ruc_R956vDmMOUKze01ZQ6N-zm3k3dOFS-n_MUUr4mF9H1Oax_7xX5fH762LzS7fvL2-ZxSz0qM1GtGm2CkWgik0GppjVBtiGAdNwL06ooeEQQDhrl6oBtjA1GhsFD65Q0_IrcLrmHNH7PIU92P85pKJUWUSiOCKiKii0qn8acU4j2kLovl46WgT0xsQsTW5jYExPLiwcXTy7aYRfSX_L_ph_cWGM_</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Igusa, Kiyoshi</creator><creator>Todorov, Gordana</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Cyclic posets and triangulation clusters</title><author>Igusa, Kiyoshi ; Todorov, Gordana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-76b78e8528f15e66bd8e5dee05a3c48d6f43f204a0b6a9e2dffb2f12ec0da6583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Cluster analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Set theory</topic><topic>Topology</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Igusa, Kiyoshi</creatorcontrib><creatorcontrib>Todorov, Gordana</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Igusa, Kiyoshi</au><au>Todorov, Gordana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclic posets and triangulation clusters</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>62</volume><issue>7</issue><spage>1289</spage><epage>1316</epage><pages>1289-1316</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Triangulated categories coming from cyclic posets were originally introduced by the authors in a previous paper as a generalization of the constructions of various triangulated categories with cluster structures. We give an overview, and then analyze “triangulation clusters” which are those corresponding to topological triangulations of the 2-disk. Locally finite nontriangulation clusters give topological triangulations of the “cactus space” associated to the “cactus cyclic poset”.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-018-9507-3</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2019-07, Vol.62 (7), p.1289-1316
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2246322026
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Cluster analysis
Mathematics
Mathematics and Statistics
Set theory
Topology
Triangulation
title Cyclic posets and triangulation clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclic%20posets%20and%20triangulation%20clusters&rft.jtitle=Science%20China.%20Mathematics&rft.au=Igusa,%20Kiyoshi&rft.date=2019-07-01&rft.volume=62&rft.issue=7&rft.spage=1289&rft.epage=1316&rft.pages=1289-1316&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-018-9507-3&rft_dat=%3Cproquest_cross%3E2246322026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2246322026&rft_id=info:pmid/&rfr_iscdi=true