ROM-based multiobjective optimization of elliptic PDEs via numerical continuation
Multiobjective optimization plays an increasingly important role in modern applications, where several objectives are often of equal importance. The task in multiobjective optimization and multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto set) between...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Banholzer, Stefan Gebken, Bennet Dellnitz, Michael Peitz, Sebastian Volkwein, Stefan |
description | Multiobjective optimization plays an increasingly important role in modern applications, where several objectives are often of equal importance. The task in multiobjective optimization and multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto set) between the conflicting objectives. Since the Pareto set generally consists of an infinite number of solutions, the computational effort can quickly become challenging which is particularly problematic when the objectives are costly to evaluate as is the case for models governed by partial differential equations (PDEs). To decrease the numerical effort to an affordable amount, surrogate models can be used to replace the expensive PDE evaluations. Existing multiobjective optimization methods using model reduction are limited either to low parameter dimensions or to few (ideally two) objectives. In this article, we present a combination of the reduced basis model reduction method with a continuation approach using inexact gradients. The resulting approach can handle an arbitrary number of objectives while yielding a significant reduction in computing time. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2245978297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2245978297</sourcerecordid><originalsourceid>FETCH-proquest_journals_22459782973</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBasKumrstoEz1oL-M0wpVxxpyZFn19En1AqwPnnBkLMEk2UZEiLlhobRfHMW5zzLIkYNfb-RQ13MoH9F45Mk0nhaOXBDM46unNJ6fBtCCVokkJuOwrCy_ioH0vRxJcgTDakfbfd8XmLVdWhj8u2fpQ3XfHaBjN00vr6s74UU-pRkyzMi-wzJP_rg_m2T_9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245978297</pqid></control><display><type>article</type><title>ROM-based multiobjective optimization of elliptic PDEs via numerical continuation</title><source>Free E- Journals</source><creator>Banholzer, Stefan ; Gebken, Bennet ; Dellnitz, Michael ; Peitz, Sebastian ; Volkwein, Stefan</creator><creatorcontrib>Banholzer, Stefan ; Gebken, Bennet ; Dellnitz, Michael ; Peitz, Sebastian ; Volkwein, Stefan</creatorcontrib><description>Multiobjective optimization plays an increasingly important role in modern applications, where several objectives are often of equal importance. The task in multiobjective optimization and multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto set) between the conflicting objectives. Since the Pareto set generally consists of an infinite number of solutions, the computational effort can quickly become challenging which is particularly problematic when the objectives are costly to evaluate as is the case for models governed by partial differential equations (PDEs). To decrease the numerical effort to an affordable amount, surrogate models can be used to replace the expensive PDE evaluations. Existing multiobjective optimization methods using model reduction are limited either to low parameter dimensions or to few (ideally two) objectives. In this article, we present a combination of the reduced basis model reduction method with a continuation approach using inexact gradients. The resulting approach can handle an arbitrary number of objectives while yielding a significant reduction in computing time.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computing time ; Mathematical models ; Mathematical programming ; Model reduction ; Multiple objective analysis ; Optimal control ; Optimization ; Pareto optimum ; Partial differential equations</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Banholzer, Stefan</creatorcontrib><creatorcontrib>Gebken, Bennet</creatorcontrib><creatorcontrib>Dellnitz, Michael</creatorcontrib><creatorcontrib>Peitz, Sebastian</creatorcontrib><creatorcontrib>Volkwein, Stefan</creatorcontrib><title>ROM-based multiobjective optimization of elliptic PDEs via numerical continuation</title><title>arXiv.org</title><description>Multiobjective optimization plays an increasingly important role in modern applications, where several objectives are often of equal importance. The task in multiobjective optimization and multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto set) between the conflicting objectives. Since the Pareto set generally consists of an infinite number of solutions, the computational effort can quickly become challenging which is particularly problematic when the objectives are costly to evaluate as is the case for models governed by partial differential equations (PDEs). To decrease the numerical effort to an affordable amount, surrogate models can be used to replace the expensive PDE evaluations. Existing multiobjective optimization methods using model reduction are limited either to low parameter dimensions or to few (ideally two) objectives. In this article, we present a combination of the reduced basis model reduction method with a continuation approach using inexact gradients. The resulting approach can handle an arbitrary number of objectives while yielding a significant reduction in computing time.</description><subject>Computing time</subject><subject>Mathematical models</subject><subject>Mathematical programming</subject><subject>Model reduction</subject><subject>Multiple objective analysis</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Partial differential equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBasKumrstoEz1oL-M0wpVxxpyZFn19En1AqwPnnBkLMEk2UZEiLlhobRfHMW5zzLIkYNfb-RQ13MoH9F45Mk0nhaOXBDM46unNJ6fBtCCVokkJuOwrCy_ioH0vRxJcgTDakfbfd8XmLVdWhj8u2fpQ3XfHaBjN00vr6s74UU-pRkyzMi-wzJP_rg_m2T_9</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Banholzer, Stefan</creator><creator>Gebken, Bennet</creator><creator>Dellnitz, Michael</creator><creator>Peitz, Sebastian</creator><creator>Volkwein, Stefan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190621</creationdate><title>ROM-based multiobjective optimization of elliptic PDEs via numerical continuation</title><author>Banholzer, Stefan ; Gebken, Bennet ; Dellnitz, Michael ; Peitz, Sebastian ; Volkwein, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22459782973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computing time</topic><topic>Mathematical models</topic><topic>Mathematical programming</topic><topic>Model reduction</topic><topic>Multiple objective analysis</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Partial differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Banholzer, Stefan</creatorcontrib><creatorcontrib>Gebken, Bennet</creatorcontrib><creatorcontrib>Dellnitz, Michael</creatorcontrib><creatorcontrib>Peitz, Sebastian</creatorcontrib><creatorcontrib>Volkwein, Stefan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banholzer, Stefan</au><au>Gebken, Bennet</au><au>Dellnitz, Michael</au><au>Peitz, Sebastian</au><au>Volkwein, Stefan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ROM-based multiobjective optimization of elliptic PDEs via numerical continuation</atitle><jtitle>arXiv.org</jtitle><date>2019-06-21</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Multiobjective optimization plays an increasingly important role in modern applications, where several objectives are often of equal importance. The task in multiobjective optimization and multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto set) between the conflicting objectives. Since the Pareto set generally consists of an infinite number of solutions, the computational effort can quickly become challenging which is particularly problematic when the objectives are costly to evaluate as is the case for models governed by partial differential equations (PDEs). To decrease the numerical effort to an affordable amount, surrogate models can be used to replace the expensive PDE evaluations. Existing multiobjective optimization methods using model reduction are limited either to low parameter dimensions or to few (ideally two) objectives. In this article, we present a combination of the reduced basis model reduction method with a continuation approach using inexact gradients. The resulting approach can handle an arbitrary number of objectives while yielding a significant reduction in computing time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2245978297 |
source | Free E- Journals |
subjects | Computing time Mathematical models Mathematical programming Model reduction Multiple objective analysis Optimal control Optimization Pareto optimum Partial differential equations |
title | ROM-based multiobjective optimization of elliptic PDEs via numerical continuation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ROM-based%20multiobjective%20optimization%20of%20elliptic%20PDEs%20via%20numerical%20continuation&rft.jtitle=arXiv.org&rft.au=Banholzer,%20Stefan&rft.date=2019-06-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2245978297%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245978297&rft_id=info:pmid/&rfr_iscdi=true |