Mean-value at risk portfolio selection problem using clustering technique : A case study
Each financial investment refers to a highly volatile environment in the global market, thus adding uncertainties in the financial market makes an optimal portfolio selection problem a major disadvantage in the market scenario. In this paper, we present an integrated approach to a portfolio selectio...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2112 |
creator | Kumari, Sheshma Kiran Kumar, P. Priya, J. Surya, S. Bhurjee, A. K. |
description | Each financial investment refers to a highly volatile environment in the global market, thus adding uncertainties in the financial market makes an optimal portfolio selection problem a major disadvantage in the market scenario. In this paper, we present an integrated approach to a portfolio selection problem using clustering technique. A classification of historical stock data from the Sensex Bombay Stock Exchange into a cluster is presented using the K-Mean technique. Also, the Mean-Value-at-Risk model is used to select the optimum portfolio using non-convex programming problems. Finally, the analytical findings are supported by a case study. |
doi_str_mv | 10.1063/1.5112363 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2245910158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2245910158</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-d359c1bf1f881101853bd268e21f4d6d18269c30ae7cc6d23a5bc37132198e6d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A1k2yyWW-l-A8qXhR6C9kkq6nb3TXJFvrt3dKCN08zh9978-YhdA1kBkSwO5hxAMoEO0ET4ByyQoA4RRNCyjyjOVudo4sY14TQsijkBK1enW6zrW4Gh3XCwcdv3Hch1V3jOxxd40zyXYv70FWN2-Ah-vYTm2aIyYX9mpz5av3PKL_Hc2x0dDimwe4u0Vmtm-iujnOKPh4f3hfP2fLt6WUxX2Y9lTJllvHSQFVDLSUAAclZZamQjkKdW2FBUlEaRrQrjBGWMs0rwwpgFErphGVTdHPwHROOKWJS624I7XhSUZrzcvTkcqRuD1Q0Pun9R6oPfqPDTm27oEAdW1O9rf-Dgah9zX8C9gsdl26V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2245910158</pqid></control><display><type>conference_proceeding</type><title>Mean-value at risk portfolio selection problem using clustering technique : A case study</title><source>AIP Journals Complete</source><creator>Kumari, Sheshma Kiran ; Kumar, P. ; Priya, J. ; Surya, S. ; Bhurjee, A. K.</creator><contributor>Govindarajan, A. ; Sangeetha, S. ; Sambath, P.</contributor><creatorcontrib>Kumari, Sheshma Kiran ; Kumar, P. ; Priya, J. ; Surya, S. ; Bhurjee, A. K. ; Govindarajan, A. ; Sangeetha, S. ; Sambath, P.</creatorcontrib><description>Each financial investment refers to a highly volatile environment in the global market, thus adding uncertainties in the financial market makes an optimal portfolio selection problem a major disadvantage in the market scenario. In this paper, we present an integrated approach to a portfolio selection problem using clustering technique. A classification of historical stock data from the Sensex Bombay Stock Exchange into a cluster is presented using the K-Mean technique. Also, the Mean-Value-at-Risk model is used to select the optimum portfolio using non-convex programming problems. Finally, the analytical findings are supported by a case study.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5112363</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Case studies ; Clustering ; Convexity ; Global marketing ; Markets ; Optimization ; Portfolio management ; Stock exchanges</subject><ispartof>AIP conference proceedings, 2019, Vol.2112 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5112363$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Govindarajan, A.</contributor><contributor>Sangeetha, S.</contributor><contributor>Sambath, P.</contributor><creatorcontrib>Kumari, Sheshma Kiran</creatorcontrib><creatorcontrib>Kumar, P.</creatorcontrib><creatorcontrib>Priya, J.</creatorcontrib><creatorcontrib>Surya, S.</creatorcontrib><creatorcontrib>Bhurjee, A. K.</creatorcontrib><title>Mean-value at risk portfolio selection problem using clustering technique : A case study</title><title>AIP conference proceedings</title><description>Each financial investment refers to a highly volatile environment in the global market, thus adding uncertainties in the financial market makes an optimal portfolio selection problem a major disadvantage in the market scenario. In this paper, we present an integrated approach to a portfolio selection problem using clustering technique. A classification of historical stock data from the Sensex Bombay Stock Exchange into a cluster is presented using the K-Mean technique. Also, the Mean-Value-at-Risk model is used to select the optimum portfolio using non-convex programming problems. Finally, the analytical findings are supported by a case study.</description><subject>Case studies</subject><subject>Clustering</subject><subject>Convexity</subject><subject>Global marketing</subject><subject>Markets</subject><subject>Optimization</subject><subject>Portfolio management</subject><subject>Stock exchanges</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A1k2yyWW-l-A8qXhR6C9kkq6nb3TXJFvrt3dKCN08zh9978-YhdA1kBkSwO5hxAMoEO0ET4ByyQoA4RRNCyjyjOVudo4sY14TQsijkBK1enW6zrW4Gh3XCwcdv3Hch1V3jOxxd40zyXYv70FWN2-Ah-vYTm2aIyYX9mpz5av3PKL_Hc2x0dDimwe4u0Vmtm-iujnOKPh4f3hfP2fLt6WUxX2Y9lTJllvHSQFVDLSUAAclZZamQjkKdW2FBUlEaRrQrjBGWMs0rwwpgFErphGVTdHPwHROOKWJS624I7XhSUZrzcvTkcqRuD1Q0Pun9R6oPfqPDTm27oEAdW1O9rf-Dgah9zX8C9gsdl26V</recordid><startdate>20190621</startdate><enddate>20190621</enddate><creator>Kumari, Sheshma Kiran</creator><creator>Kumar, P.</creator><creator>Priya, J.</creator><creator>Surya, S.</creator><creator>Bhurjee, A. K.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190621</creationdate><title>Mean-value at risk portfolio selection problem using clustering technique : A case study</title><author>Kumari, Sheshma Kiran ; Kumar, P. ; Priya, J. ; Surya, S. ; Bhurjee, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-d359c1bf1f881101853bd268e21f4d6d18269c30ae7cc6d23a5bc37132198e6d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Case studies</topic><topic>Clustering</topic><topic>Convexity</topic><topic>Global marketing</topic><topic>Markets</topic><topic>Optimization</topic><topic>Portfolio management</topic><topic>Stock exchanges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Sheshma Kiran</creatorcontrib><creatorcontrib>Kumar, P.</creatorcontrib><creatorcontrib>Priya, J.</creatorcontrib><creatorcontrib>Surya, S.</creatorcontrib><creatorcontrib>Bhurjee, A. K.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Sheshma Kiran</au><au>Kumar, P.</au><au>Priya, J.</au><au>Surya, S.</au><au>Bhurjee, A. K.</au><au>Govindarajan, A.</au><au>Sangeetha, S.</au><au>Sambath, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mean-value at risk portfolio selection problem using clustering technique : A case study</atitle><btitle>AIP conference proceedings</btitle><date>2019-06-21</date><risdate>2019</risdate><volume>2112</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Each financial investment refers to a highly volatile environment in the global market, thus adding uncertainties in the financial market makes an optimal portfolio selection problem a major disadvantage in the market scenario. In this paper, we present an integrated approach to a portfolio selection problem using clustering technique. A classification of historical stock data from the Sensex Bombay Stock Exchange into a cluster is presented using the K-Mean technique. Also, the Mean-Value-at-Risk model is used to select the optimum portfolio using non-convex programming problems. Finally, the analytical findings are supported by a case study.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5112363</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2112 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2245910158 |
source | AIP Journals Complete |
subjects | Case studies Clustering Convexity Global marketing Markets Optimization Portfolio management Stock exchanges |
title | Mean-value at risk portfolio selection problem using clustering technique : A case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mean-value%20at%20risk%20portfolio%20selection%20problem%20using%20clustering%20technique%20:%20A%20case%20study&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumari,%20Sheshma%20Kiran&rft.date=2019-06-21&rft.volume=2112&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5112363&rft_dat=%3Cproquest_scita%3E2245910158%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245910158&rft_id=info:pmid/&rfr_iscdi=true |