On the synoptic-scale lagrangian autocorrelation function
A large set of 10-day, quasi-two-dimensional atmospheric trajectory model data is used to compute Lagrangian autocorrelation functions for horizontal velocity components and to determine their integral timescale TL. The objectives of the study are to investigate the seasonal, interannual, and altitu...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2003-02, Vol.42 (2), p.318 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 318 |
container_title | Journal of applied meteorology and climatology |
container_volume | 42 |
creator | Daoud, Wessam Z Kahl, Jonathan D W Ghorai, Jugal K |
description | A large set of 10-day, quasi-two-dimensional atmospheric trajectory model data is used to compute Lagrangian autocorrelation functions for horizontal velocity components and to determine their integral timescale TL. The objectives of the study are to investigate the seasonal, interannual, and altitudinal behavior of TL and to present the Lagrangian autocorrelation functions corresponding to synoptic-scale flow. Results indicate that the integral timescale TL ranges from 15 to 24 h, with values for the meridional velocity component that are 10%-25% less than values for the zonal velocity component. The Lagrangian autocorrelation functions are modeled using Gaussian and second-order autoregressive autocorrelation models. The model fits to the observed autocorrelation functions were found to be of similar form to those determined for a 1-yr set of three-dimensional trajectory data, suggesting that these functions are robust with respect to synoptic-scale, tropospheric flow. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_224583756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>290706431</sourcerecordid><originalsourceid>FETCH-proquest_journals_2245837563</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMoWKv_ENwLNQ8TZ1HcXNzLJaQ1JdzUPAb_XgVxdjoHzpmRaielbrTgbP5zJpZkldLYtkIoJStyuCLNd0vTE8OUnWmSAW-phyECDg6QQsnBhBith-wC0r6g-ciaLHrwyW6-rMn2fLodL80Uw6PYlLsxlIjv1DEmpOZK7vlf0wtW5Dgl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224583756</pqid></control><display><type>article</type><title>On the synoptic-scale lagrangian autocorrelation function</title><source>American Meteorological Society</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Daoud, Wessam Z ; Kahl, Jonathan D W ; Ghorai, Jugal K</creator><creatorcontrib>Daoud, Wessam Z ; Kahl, Jonathan D W ; Ghorai, Jugal K</creatorcontrib><description>A large set of 10-day, quasi-two-dimensional atmospheric trajectory model data is used to compute Lagrangian autocorrelation functions for horizontal velocity components and to determine their integral timescale TL. The objectives of the study are to investigate the seasonal, interannual, and altitudinal behavior of TL and to present the Lagrangian autocorrelation functions corresponding to synoptic-scale flow. Results indicate that the integral timescale TL ranges from 15 to 24 h, with values for the meridional velocity component that are 10%-25% less than values for the zonal velocity component. The Lagrangian autocorrelation functions are modeled using Gaussian and second-order autoregressive autocorrelation models. The model fits to the observed autocorrelation functions were found to be of similar form to those determined for a 1-yr set of three-dimensional trajectory data, suggesting that these functions are robust with respect to synoptic-scale, tropospheric flow.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Meteorology</subject><ispartof>Journal of applied meteorology and climatology, 2003-02, Vol.42 (2), p.318</ispartof><rights>Copyright American Meteorological Society Feb 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785</link.rule.ids></links><search><creatorcontrib>Daoud, Wessam Z</creatorcontrib><creatorcontrib>Kahl, Jonathan D W</creatorcontrib><creatorcontrib>Ghorai, Jugal K</creatorcontrib><title>On the synoptic-scale lagrangian autocorrelation function</title><title>Journal of applied meteorology and climatology</title><description>A large set of 10-day, quasi-two-dimensional atmospheric trajectory model data is used to compute Lagrangian autocorrelation functions for horizontal velocity components and to determine their integral timescale TL. The objectives of the study are to investigate the seasonal, interannual, and altitudinal behavior of TL and to present the Lagrangian autocorrelation functions corresponding to synoptic-scale flow. Results indicate that the integral timescale TL ranges from 15 to 24 h, with values for the meridional velocity component that are 10%-25% less than values for the zonal velocity component. The Lagrangian autocorrelation functions are modeled using Gaussian and second-order autoregressive autocorrelation models. The model fits to the observed autocorrelation functions were found to be of similar form to those determined for a 1-yr set of three-dimensional trajectory data, suggesting that these functions are robust with respect to synoptic-scale, tropospheric flow.</description><subject>Atmosphere</subject><subject>Meteorology</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNirsKwjAUQIMoWKv_ENwLNQ8TZ1HcXNzLJaQ1JdzUPAb_XgVxdjoHzpmRaielbrTgbP5zJpZkldLYtkIoJStyuCLNd0vTE8OUnWmSAW-phyECDg6QQsnBhBith-wC0r6g-ciaLHrwyW6-rMn2fLodL80Uw6PYlLsxlIjv1DEmpOZK7vlf0wtW5Dgl</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Daoud, Wessam Z</creator><creator>Kahl, Jonathan D W</creator><creator>Ghorai, Jugal K</creator><general>American Meteorological Society</general><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20030201</creationdate><title>On the synoptic-scale lagrangian autocorrelation function</title><author>Daoud, Wessam Z ; Kahl, Jonathan D W ; Ghorai, Jugal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2245837563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Atmosphere</topic><topic>Meteorology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daoud, Wessam Z</creatorcontrib><creatorcontrib>Kahl, Jonathan D W</creatorcontrib><creatorcontrib>Ghorai, Jugal K</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daoud, Wessam Z</au><au>Kahl, Jonathan D W</au><au>Ghorai, Jugal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the synoptic-scale lagrangian autocorrelation function</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2003-02-01</date><risdate>2003</risdate><volume>42</volume><issue>2</issue><spage>318</spage><pages>318-</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>A large set of 10-day, quasi-two-dimensional atmospheric trajectory model data is used to compute Lagrangian autocorrelation functions for horizontal velocity components and to determine their integral timescale TL. The objectives of the study are to investigate the seasonal, interannual, and altitudinal behavior of TL and to present the Lagrangian autocorrelation functions corresponding to synoptic-scale flow. Results indicate that the integral timescale TL ranges from 15 to 24 h, with values for the meridional velocity component that are 10%-25% less than values for the zonal velocity component. The Lagrangian autocorrelation functions are modeled using Gaussian and second-order autoregressive autocorrelation models. The model fits to the observed autocorrelation functions were found to be of similar form to those determined for a 1-yr set of three-dimensional trajectory data, suggesting that these functions are robust with respect to synoptic-scale, tropospheric flow.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology and climatology, 2003-02, Vol.42 (2), p.318 |
issn | 1558-8424 1558-8432 |
language | eng |
recordid | cdi_proquest_journals_224583756 |
source | American Meteorological Society; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Atmosphere Meteorology |
title | On the synoptic-scale lagrangian autocorrelation function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A06%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20synoptic-scale%20lagrangian%20autocorrelation%20function&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Daoud,%20Wessam%20Z&rft.date=2003-02-01&rft.volume=42&rft.issue=2&rft.spage=318&rft.pages=318-&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/&rft_dat=%3Cproquest%3E290706431%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224583756&rft_id=info:pmid/&rfr_iscdi=true |