Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires
CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while k...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2019-05, Vol.230, p.231-238 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 238 |
---|---|
container_issue | |
container_start_page | 231 |
container_title | Materials chemistry and physics |
container_volume | 230 |
creator | Agarwal, Shivani Pohl, Diana Patra, Ajit Kumar Nielsch, Kornelius Khatri, Manvendra Singh |
description | CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while keeping the non-magnetic layer thickness constant (tCu = 30 s). Scanning electron microscopy and transmission electron microscopy confirm uniform, continuous and densely packed wires. By increasing the CoFe deposition time the aspect ratio enhanced and a layer stacking is demonstrated. The EDX line scan along the single nanowire indicates that they are Cu-rich with the composition of 10–15% Co, 0–5% Fe and 75–80% Cu. Magnetic measurements reveal a temperature dependency of the coercivity. The increase in coercivity is associated with the inherent shape and magnetocrystalline anisotropy of the nanowires. Magnetic measurements at low temperature exhibited the increase in coercivity of CoFe-Cu nanowires as a result of the freezing of thermal fluctuations.
[Display omitted]
•CoFe-Cu multilayer nanowires have been synthesized by pulse electrodeposition technique.•TEM confirmed good morphology and stacked layers.•X-ray diffraction confirms the formation of bcc structure.•High value of coercivity is observed parallel to wire axis. |
doi_str_mv | 10.1016/j.matchemphys.2019.03.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2245650883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058419302652</els_id><sourcerecordid>2245650883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a99e9e1f2d607f81ef8e04b34ad99108aa269f61cf365a770084734e68c396a23</originalsourceid><addsrcrecordid>eNqNkEFLxDAQhYMouK7-h4rn1knTpslRiqvCgh705CHEdMpm6TY1SZX119u1Hjx6Gph57w3vI-SSQkaB8uttttPRbHA3bPYhy4HKDFgGvDwiCyoqmTJG82OygLwsUihFcUrOQtgC0IpStiCvTx4H7XW0rk903yS97l0wusPEbKa9iejt13x2bYIdmuhdg4MLNmKT1G6FaT0mu7GLttN79D8Jn9ZjOCcnre4CXvzOJXlZ3T7X9-n68e6hvlmnpqBlTLWUKJG2ecOhagXFViAUb6zQjZQUhNY5ly2npmW81FUFIIqKFciFYZLrnC3J1Zw7ePc-Yohq60bfTy9VnhclL0EINqnkrDLeheCxVYO3O-33ioI6sFRb9YelOrBUwNTEcvLWsxenGh8WvQrGYm-wmXqaqBpn_5HyDQLZhL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245650883</pqid></control><display><type>article</type><title>Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Agarwal, Shivani ; Pohl, Diana ; Patra, Ajit Kumar ; Nielsch, Kornelius ; Khatri, Manvendra Singh</creator><creatorcontrib>Agarwal, Shivani ; Pohl, Diana ; Patra, Ajit Kumar ; Nielsch, Kornelius ; Khatri, Manvendra Singh</creatorcontrib><description>CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while keeping the non-magnetic layer thickness constant (tCu = 30 s). Scanning electron microscopy and transmission electron microscopy confirm uniform, continuous and densely packed wires. By increasing the CoFe deposition time the aspect ratio enhanced and a layer stacking is demonstrated. The EDX line scan along the single nanowire indicates that they are Cu-rich with the composition of 10–15% Co, 0–5% Fe and 75–80% Cu. Magnetic measurements reveal a temperature dependency of the coercivity. The increase in coercivity is associated with the inherent shape and magnetocrystalline anisotropy of the nanowires. Magnetic measurements at low temperature exhibited the increase in coercivity of CoFe-Cu nanowires as a result of the freezing of thermal fluctuations.
[Display omitted]
•CoFe-Cu multilayer nanowires have been synthesized by pulse electrodeposition technique.•TEM confirmed good morphology and stacked layers.•X-ray diffraction confirms the formation of bcc structure.•High value of coercivity is observed parallel to wire axis.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2019.03.065</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>AAO template ; Aluminum oxide ; Anisotropy ; Aspect ratio ; Coercivity ; CoFe-Cu multilayer ; Copper ; Freezing ; Magnetic measurement ; Magnetism ; Microscopy ; Multilayers ; Nanowires ; Pulse electrodeposition ; Scanning electron microscopy ; Shape anisotropy ; Temperature dependence ; Thickness ; Transmission electron microscopy ; Variations</subject><ispartof>Materials chemistry and physics, 2019-05, Vol.230, p.231-238</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a99e9e1f2d607f81ef8e04b34ad99108aa269f61cf365a770084734e68c396a23</citedby><cites>FETCH-LOGICAL-c415t-a99e9e1f2d607f81ef8e04b34ad99108aa269f61cf365a770084734e68c396a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2019.03.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Agarwal, Shivani</creatorcontrib><creatorcontrib>Pohl, Diana</creatorcontrib><creatorcontrib>Patra, Ajit Kumar</creatorcontrib><creatorcontrib>Nielsch, Kornelius</creatorcontrib><creatorcontrib>Khatri, Manvendra Singh</creatorcontrib><title>Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires</title><title>Materials chemistry and physics</title><description>CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while keeping the non-magnetic layer thickness constant (tCu = 30 s). Scanning electron microscopy and transmission electron microscopy confirm uniform, continuous and densely packed wires. By increasing the CoFe deposition time the aspect ratio enhanced and a layer stacking is demonstrated. The EDX line scan along the single nanowire indicates that they are Cu-rich with the composition of 10–15% Co, 0–5% Fe and 75–80% Cu. Magnetic measurements reveal a temperature dependency of the coercivity. The increase in coercivity is associated with the inherent shape and magnetocrystalline anisotropy of the nanowires. Magnetic measurements at low temperature exhibited the increase in coercivity of CoFe-Cu nanowires as a result of the freezing of thermal fluctuations.
[Display omitted]
•CoFe-Cu multilayer nanowires have been synthesized by pulse electrodeposition technique.•TEM confirmed good morphology and stacked layers.•X-ray diffraction confirms the formation of bcc structure.•High value of coercivity is observed parallel to wire axis.</description><subject>AAO template</subject><subject>Aluminum oxide</subject><subject>Anisotropy</subject><subject>Aspect ratio</subject><subject>Coercivity</subject><subject>CoFe-Cu multilayer</subject><subject>Copper</subject><subject>Freezing</subject><subject>Magnetic measurement</subject><subject>Magnetism</subject><subject>Microscopy</subject><subject>Multilayers</subject><subject>Nanowires</subject><subject>Pulse electrodeposition</subject><subject>Scanning electron microscopy</subject><subject>Shape anisotropy</subject><subject>Temperature dependence</subject><subject>Thickness</subject><subject>Transmission electron microscopy</subject><subject>Variations</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLxDAQhYMouK7-h4rn1knTpslRiqvCgh705CHEdMpm6TY1SZX119u1Hjx6Gph57w3vI-SSQkaB8uttttPRbHA3bPYhy4HKDFgGvDwiCyoqmTJG82OygLwsUihFcUrOQtgC0IpStiCvTx4H7XW0rk903yS97l0wusPEbKa9iejt13x2bYIdmuhdg4MLNmKT1G6FaT0mu7GLttN79D8Jn9ZjOCcnre4CXvzOJXlZ3T7X9-n68e6hvlmnpqBlTLWUKJG2ecOhagXFViAUb6zQjZQUhNY5ly2npmW81FUFIIqKFciFYZLrnC3J1Zw7ePc-Yohq60bfTy9VnhclL0EINqnkrDLeheCxVYO3O-33ioI6sFRb9YelOrBUwNTEcvLWsxenGh8WvQrGYm-wmXqaqBpn_5HyDQLZhL8</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Agarwal, Shivani</creator><creator>Pohl, Diana</creator><creator>Patra, Ajit Kumar</creator><creator>Nielsch, Kornelius</creator><creator>Khatri, Manvendra Singh</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190515</creationdate><title>Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires</title><author>Agarwal, Shivani ; Pohl, Diana ; Patra, Ajit Kumar ; Nielsch, Kornelius ; Khatri, Manvendra Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a99e9e1f2d607f81ef8e04b34ad99108aa269f61cf365a770084734e68c396a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AAO template</topic><topic>Aluminum oxide</topic><topic>Anisotropy</topic><topic>Aspect ratio</topic><topic>Coercivity</topic><topic>CoFe-Cu multilayer</topic><topic>Copper</topic><topic>Freezing</topic><topic>Magnetic measurement</topic><topic>Magnetism</topic><topic>Microscopy</topic><topic>Multilayers</topic><topic>Nanowires</topic><topic>Pulse electrodeposition</topic><topic>Scanning electron microscopy</topic><topic>Shape anisotropy</topic><topic>Temperature dependence</topic><topic>Thickness</topic><topic>Transmission electron microscopy</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Shivani</creatorcontrib><creatorcontrib>Pohl, Diana</creatorcontrib><creatorcontrib>Patra, Ajit Kumar</creatorcontrib><creatorcontrib>Nielsch, Kornelius</creatorcontrib><creatorcontrib>Khatri, Manvendra Singh</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Shivani</au><au>Pohl, Diana</au><au>Patra, Ajit Kumar</au><au>Nielsch, Kornelius</au><au>Khatri, Manvendra Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires</atitle><jtitle>Materials chemistry and physics</jtitle><date>2019-05-15</date><risdate>2019</risdate><volume>230</volume><spage>231</spage><epage>238</epage><pages>231-238</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while keeping the non-magnetic layer thickness constant (tCu = 30 s). Scanning electron microscopy and transmission electron microscopy confirm uniform, continuous and densely packed wires. By increasing the CoFe deposition time the aspect ratio enhanced and a layer stacking is demonstrated. The EDX line scan along the single nanowire indicates that they are Cu-rich with the composition of 10–15% Co, 0–5% Fe and 75–80% Cu. Magnetic measurements reveal a temperature dependency of the coercivity. The increase in coercivity is associated with the inherent shape and magnetocrystalline anisotropy of the nanowires. Magnetic measurements at low temperature exhibited the increase in coercivity of CoFe-Cu nanowires as a result of the freezing of thermal fluctuations.
[Display omitted]
•CoFe-Cu multilayer nanowires have been synthesized by pulse electrodeposition technique.•TEM confirmed good morphology and stacked layers.•X-ray diffraction confirms the formation of bcc structure.•High value of coercivity is observed parallel to wire axis.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2019.03.065</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2019-05, Vol.230, p.231-238 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_proquest_journals_2245650883 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | AAO template Aluminum oxide Anisotropy Aspect ratio Coercivity CoFe-Cu multilayer Copper Freezing Magnetic measurement Magnetism Microscopy Multilayers Nanowires Pulse electrodeposition Scanning electron microscopy Shape anisotropy Temperature dependence Thickness Transmission electron microscopy Variations |
title | Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20nanoscale%20characterization%20of%20electrodeposited%20CoFe-Cu%20multilayer%20nanowires&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Agarwal,%20Shivani&rft.date=2019-05-15&rft.volume=230&rft.spage=231&rft.epage=238&rft.pages=231-238&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2019.03.065&rft_dat=%3Cproquest_cross%3E2245650883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245650883&rft_id=info:pmid/&rft_els_id=S0254058419302652&rfr_iscdi=true |