Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires

CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2019-05, Vol.230, p.231-238
Hauptverfasser: Agarwal, Shivani, Pohl, Diana, Patra, Ajit Kumar, Nielsch, Kornelius, Khatri, Manvendra Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue
container_start_page 231
container_title Materials chemistry and physics
container_volume 230
creator Agarwal, Shivani
Pohl, Diana
Patra, Ajit Kumar
Nielsch, Kornelius
Khatri, Manvendra Singh
description CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while keeping the non-magnetic layer thickness constant (tCu = 30 s). Scanning electron microscopy and transmission electron microscopy confirm uniform, continuous and densely packed wires. By increasing the CoFe deposition time the aspect ratio enhanced and a layer stacking is demonstrated. The EDX line scan along the single nanowire indicates that they are Cu-rich with the composition of 10–15% Co, 0–5% Fe and 75–80% Cu. Magnetic measurements reveal a temperature dependency of the coercivity. The increase in coercivity is associated with the inherent shape and magnetocrystalline anisotropy of the nanowires. Magnetic measurements at low temperature exhibited the increase in coercivity of CoFe-Cu nanowires as a result of the freezing of thermal fluctuations. [Display omitted] •CoFe-Cu multilayer nanowires have been synthesized by pulse electrodeposition technique.•TEM confirmed good morphology and stacked layers.•X-ray diffraction confirms the formation of bcc structure.•High value of coercivity is observed parallel to wire axis.
doi_str_mv 10.1016/j.matchemphys.2019.03.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2245650883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058419302652</els_id><sourcerecordid>2245650883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-a99e9e1f2d607f81ef8e04b34ad99108aa269f61cf365a770084734e68c396a23</originalsourceid><addsrcrecordid>eNqNkEFLxDAQhYMouK7-h4rn1knTpslRiqvCgh705CHEdMpm6TY1SZX119u1Hjx6Gph57w3vI-SSQkaB8uttttPRbHA3bPYhy4HKDFgGvDwiCyoqmTJG82OygLwsUihFcUrOQtgC0IpStiCvTx4H7XW0rk903yS97l0wusPEbKa9iejt13x2bYIdmuhdg4MLNmKT1G6FaT0mu7GLttN79D8Jn9ZjOCcnre4CXvzOJXlZ3T7X9-n68e6hvlmnpqBlTLWUKJG2ecOhagXFViAUb6zQjZQUhNY5ly2npmW81FUFIIqKFciFYZLrnC3J1Zw7ePc-Yohq60bfTy9VnhclL0EINqnkrDLeheCxVYO3O-33ioI6sFRb9YelOrBUwNTEcvLWsxenGh8WvQrGYm-wmXqaqBpn_5HyDQLZhL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2245650883</pqid></control><display><type>article</type><title>Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Agarwal, Shivani ; Pohl, Diana ; Patra, Ajit Kumar ; Nielsch, Kornelius ; Khatri, Manvendra Singh</creator><creatorcontrib>Agarwal, Shivani ; Pohl, Diana ; Patra, Ajit Kumar ; Nielsch, Kornelius ; Khatri, Manvendra Singh</creatorcontrib><description>CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while keeping the non-magnetic layer thickness constant (tCu = 30 s). Scanning electron microscopy and transmission electron microscopy confirm uniform, continuous and densely packed wires. By increasing the CoFe deposition time the aspect ratio enhanced and a layer stacking is demonstrated. The EDX line scan along the single nanowire indicates that they are Cu-rich with the composition of 10–15% Co, 0–5% Fe and 75–80% Cu. Magnetic measurements reveal a temperature dependency of the coercivity. The increase in coercivity is associated with the inherent shape and magnetocrystalline anisotropy of the nanowires. Magnetic measurements at low temperature exhibited the increase in coercivity of CoFe-Cu nanowires as a result of the freezing of thermal fluctuations. [Display omitted] •CoFe-Cu multilayer nanowires have been synthesized by pulse electrodeposition technique.•TEM confirmed good morphology and stacked layers.•X-ray diffraction confirms the formation of bcc structure.•High value of coercivity is observed parallel to wire axis.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2019.03.065</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>AAO template ; Aluminum oxide ; Anisotropy ; Aspect ratio ; Coercivity ; CoFe-Cu multilayer ; Copper ; Freezing ; Magnetic measurement ; Magnetism ; Microscopy ; Multilayers ; Nanowires ; Pulse electrodeposition ; Scanning electron microscopy ; Shape anisotropy ; Temperature dependence ; Thickness ; Transmission electron microscopy ; Variations</subject><ispartof>Materials chemistry and physics, 2019-05, Vol.230, p.231-238</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-a99e9e1f2d607f81ef8e04b34ad99108aa269f61cf365a770084734e68c396a23</citedby><cites>FETCH-LOGICAL-c415t-a99e9e1f2d607f81ef8e04b34ad99108aa269f61cf365a770084734e68c396a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchemphys.2019.03.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Agarwal, Shivani</creatorcontrib><creatorcontrib>Pohl, Diana</creatorcontrib><creatorcontrib>Patra, Ajit Kumar</creatorcontrib><creatorcontrib>Nielsch, Kornelius</creatorcontrib><creatorcontrib>Khatri, Manvendra Singh</creatorcontrib><title>Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires</title><title>Materials chemistry and physics</title><description>CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while keeping the non-magnetic layer thickness constant (tCu = 30 s). Scanning electron microscopy and transmission electron microscopy confirm uniform, continuous and densely packed wires. By increasing the CoFe deposition time the aspect ratio enhanced and a layer stacking is demonstrated. The EDX line scan along the single nanowire indicates that they are Cu-rich with the composition of 10–15% Co, 0–5% Fe and 75–80% Cu. Magnetic measurements reveal a temperature dependency of the coercivity. The increase in coercivity is associated with the inherent shape and magnetocrystalline anisotropy of the nanowires. Magnetic measurements at low temperature exhibited the increase in coercivity of CoFe-Cu nanowires as a result of the freezing of thermal fluctuations. [Display omitted] •CoFe-Cu multilayer nanowires have been synthesized by pulse electrodeposition technique.•TEM confirmed good morphology and stacked layers.•X-ray diffraction confirms the formation of bcc structure.•High value of coercivity is observed parallel to wire axis.</description><subject>AAO template</subject><subject>Aluminum oxide</subject><subject>Anisotropy</subject><subject>Aspect ratio</subject><subject>Coercivity</subject><subject>CoFe-Cu multilayer</subject><subject>Copper</subject><subject>Freezing</subject><subject>Magnetic measurement</subject><subject>Magnetism</subject><subject>Microscopy</subject><subject>Multilayers</subject><subject>Nanowires</subject><subject>Pulse electrodeposition</subject><subject>Scanning electron microscopy</subject><subject>Shape anisotropy</subject><subject>Temperature dependence</subject><subject>Thickness</subject><subject>Transmission electron microscopy</subject><subject>Variations</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLxDAQhYMouK7-h4rn1knTpslRiqvCgh705CHEdMpm6TY1SZX119u1Hjx6Gph57w3vI-SSQkaB8uttttPRbHA3bPYhy4HKDFgGvDwiCyoqmTJG82OygLwsUihFcUrOQtgC0IpStiCvTx4H7XW0rk903yS97l0wusPEbKa9iejt13x2bYIdmuhdg4MLNmKT1G6FaT0mu7GLttN79D8Jn9ZjOCcnre4CXvzOJXlZ3T7X9-n68e6hvlmnpqBlTLWUKJG2ecOhagXFViAUb6zQjZQUhNY5ly2npmW81FUFIIqKFciFYZLrnC3J1Zw7ePc-Yohq60bfTy9VnhclL0EINqnkrDLeheCxVYO3O-33ioI6sFRb9YelOrBUwNTEcvLWsxenGh8WvQrGYm-wmXqaqBpn_5HyDQLZhL8</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Agarwal, Shivani</creator><creator>Pohl, Diana</creator><creator>Patra, Ajit Kumar</creator><creator>Nielsch, Kornelius</creator><creator>Khatri, Manvendra Singh</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190515</creationdate><title>Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires</title><author>Agarwal, Shivani ; Pohl, Diana ; Patra, Ajit Kumar ; Nielsch, Kornelius ; Khatri, Manvendra Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-a99e9e1f2d607f81ef8e04b34ad99108aa269f61cf365a770084734e68c396a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AAO template</topic><topic>Aluminum oxide</topic><topic>Anisotropy</topic><topic>Aspect ratio</topic><topic>Coercivity</topic><topic>CoFe-Cu multilayer</topic><topic>Copper</topic><topic>Freezing</topic><topic>Magnetic measurement</topic><topic>Magnetism</topic><topic>Microscopy</topic><topic>Multilayers</topic><topic>Nanowires</topic><topic>Pulse electrodeposition</topic><topic>Scanning electron microscopy</topic><topic>Shape anisotropy</topic><topic>Temperature dependence</topic><topic>Thickness</topic><topic>Transmission electron microscopy</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Shivani</creatorcontrib><creatorcontrib>Pohl, Diana</creatorcontrib><creatorcontrib>Patra, Ajit Kumar</creatorcontrib><creatorcontrib>Nielsch, Kornelius</creatorcontrib><creatorcontrib>Khatri, Manvendra Singh</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Shivani</au><au>Pohl, Diana</au><au>Patra, Ajit Kumar</au><au>Nielsch, Kornelius</au><au>Khatri, Manvendra Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires</atitle><jtitle>Materials chemistry and physics</jtitle><date>2019-05-15</date><risdate>2019</risdate><volume>230</volume><spage>231</spage><epage>238</epage><pages>231-238</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>CoFe-Cu multilayered nanowires have been fabricated by pulse electrodeposition into the pores of ∼100 nm diameter anodized aluminum oxide (AAO) templates. Here, we investigate three samples, where the magnetic layer thickness is increased by extending the pulse time tCoFe 10 s, 13 s and 16 s while keeping the non-magnetic layer thickness constant (tCu = 30 s). Scanning electron microscopy and transmission electron microscopy confirm uniform, continuous and densely packed wires. By increasing the CoFe deposition time the aspect ratio enhanced and a layer stacking is demonstrated. The EDX line scan along the single nanowire indicates that they are Cu-rich with the composition of 10–15% Co, 0–5% Fe and 75–80% Cu. Magnetic measurements reveal a temperature dependency of the coercivity. The increase in coercivity is associated with the inherent shape and magnetocrystalline anisotropy of the nanowires. Magnetic measurements at low temperature exhibited the increase in coercivity of CoFe-Cu nanowires as a result of the freezing of thermal fluctuations. [Display omitted] •CoFe-Cu multilayer nanowires have been synthesized by pulse electrodeposition technique.•TEM confirmed good morphology and stacked layers.•X-ray diffraction confirms the formation of bcc structure.•High value of coercivity is observed parallel to wire axis.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2019.03.065</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2019-05, Vol.230, p.231-238
issn 0254-0584
1879-3312
language eng
recordid cdi_proquest_journals_2245650883
source ScienceDirect Journals (5 years ago - present)
subjects AAO template
Aluminum oxide
Anisotropy
Aspect ratio
Coercivity
CoFe-Cu multilayer
Copper
Freezing
Magnetic measurement
Magnetism
Microscopy
Multilayers
Nanowires
Pulse electrodeposition
Scanning electron microscopy
Shape anisotropy
Temperature dependence
Thickness
Transmission electron microscopy
Variations
title Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20nanoscale%20characterization%20of%20electrodeposited%20CoFe-Cu%20multilayer%20nanowires&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Agarwal,%20Shivani&rft.date=2019-05-15&rft.volume=230&rft.spage=231&rft.epage=238&rft.pages=231-238&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2019.03.065&rft_dat=%3Cproquest_cross%3E2245650883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2245650883&rft_id=info:pmid/&rft_els_id=S0254058419302652&rfr_iscdi=true