New sampling theorem and multiplicative filtering in the FRFT domain
Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and n...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2019-07, Vol.13 (5), p.951-958 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 958 |
---|---|
container_issue | 5 |
container_start_page | 951 |
container_title | Signal, image and video processing |
container_volume | 13 |
creator | Anh, P. K. Castro, L. P. Thao, P. T. Tuan, N. M. |
description | Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated. |
doi_str_mv | 10.1007/s11760-019-01432-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2244703814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2244703814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2f7ba9e2562b4c1fea332c45163feaecef5a970c64635cbbc17ea4d66e8a52fd3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgsu4f8FTwXM132qOsrgqiIOs5pOlEs_TLpKv4702t6M2BYYbhvTe8h9ApwecEY3URCVES55iUqTmjuThAC1JIlhNFyOHvjtkxWsW4w6kYVYUsFujqAT6yaNqh8d1LNr5CH6DNTFdn7b4ZfTpbM_p3yJxvRggTyHcTLts8bbZZ3bfGdyfoyJkmwupnLtHz5nq7vs3vH2_u1pf3uWVFOebUqcqUQIWkFbfEgWGMWi6IZGkHC06YUmEruWTCVpUlCgyvpYTCCOpqtkRns-4Q-rc9xFHv-n3o0ktNKefJYJH8LxGdUTb0MQZwegi-NeFTE6ynwPQcmE6B6e_AtEgkNpPiMJmE8Cf9D-sLKQVtxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244703814</pqid></control><display><type>article</type><title>New sampling theorem and multiplicative filtering in the FRFT domain</title><source>Springer Nature - Complete Springer Journals</source><creator>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</creator><creatorcontrib>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</creatorcontrib><description>Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-019-01432-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Convolution ; Fast Fourier transformations ; Filtration ; Fourier transforms ; Frequencies ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Sampling ; Shannon theorem ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2019-07, Vol.13 (5), p.951-958</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2f7ba9e2562b4c1fea332c45163feaecef5a970c64635cbbc17ea4d66e8a52fd3</citedby><cites>FETCH-LOGICAL-c389t-2f7ba9e2562b4c1fea332c45163feaecef5a970c64635cbbc17ea4d66e8a52fd3</cites><orcidid>0000-0002-4261-8699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-019-01432-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-019-01432-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Anh, P. K.</creatorcontrib><creatorcontrib>Castro, L. P.</creatorcontrib><creatorcontrib>Thao, P. T.</creatorcontrib><creatorcontrib>Tuan, N. M.</creatorcontrib><title>New sampling theorem and multiplicative filtering in the FRFT domain</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Fast Fourier transformations</subject><subject>Filtration</subject><subject>Fourier transforms</subject><subject>Frequencies</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Sampling</subject><subject>Shannon theorem</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLgsu4f8FTwXM132qOsrgqiIOs5pOlEs_TLpKv4702t6M2BYYbhvTe8h9ApwecEY3URCVES55iUqTmjuThAC1JIlhNFyOHvjtkxWsW4w6kYVYUsFujqAT6yaNqh8d1LNr5CH6DNTFdn7b4ZfTpbM_p3yJxvRggTyHcTLts8bbZZ3bfGdyfoyJkmwupnLtHz5nq7vs3vH2_u1pf3uWVFOebUqcqUQIWkFbfEgWGMWi6IZGkHC06YUmEruWTCVpUlCgyvpYTCCOpqtkRns-4Q-rc9xFHv-n3o0ktNKefJYJH8LxGdUTb0MQZwegi-NeFTE6ynwPQcmE6B6e_AtEgkNpPiMJmE8Cf9D-sLKQVtxw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Anh, P. K.</creator><creator>Castro, L. P.</creator><creator>Thao, P. T.</creator><creator>Tuan, N. M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4261-8699</orcidid></search><sort><creationdate>20190701</creationdate><title>New sampling theorem and multiplicative filtering in the FRFT domain</title><author>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2f7ba9e2562b4c1fea332c45163feaecef5a970c64635cbbc17ea4d66e8a52fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Fast Fourier transformations</topic><topic>Filtration</topic><topic>Fourier transforms</topic><topic>Frequencies</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Sampling</topic><topic>Shannon theorem</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anh, P. K.</creatorcontrib><creatorcontrib>Castro, L. P.</creatorcontrib><creatorcontrib>Thao, P. T.</creatorcontrib><creatorcontrib>Tuan, N. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anh, P. K.</au><au>Castro, L. P.</au><au>Thao, P. T.</au><au>Tuan, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New sampling theorem and multiplicative filtering in the FRFT domain</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>951</spage><epage>958</epage><pages>951-958</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-019-01432-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4261-8699</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2019-07, Vol.13 (5), p.951-958 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2244703814 |
source | Springer Nature - Complete Springer Journals |
subjects | Computer Imaging Computer Science Convolution Fast Fourier transformations Filtration Fourier transforms Frequencies Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Sampling Shannon theorem Signal,Image and Speech Processing Vision |
title | New sampling theorem and multiplicative filtering in the FRFT domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20sampling%20theorem%20and%20multiplicative%20filtering%20in%20the%20FRFT%20domain&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Anh,%20P.%20K.&rft.date=2019-07-01&rft.volume=13&rft.issue=5&rft.spage=951&rft.epage=958&rft.pages=951-958&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-019-01432-5&rft_dat=%3Cproquest_cross%3E2244703814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244703814&rft_id=info:pmid/&rfr_iscdi=true |