New sampling theorem and multiplicative filtering in the FRFT domain

Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2019-07, Vol.13 (5), p.951-958
Hauptverfasser: Anh, P. K., Castro, L. P., Thao, P. T., Tuan, N. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 5
container_start_page 951
container_title Signal, image and video processing
container_volume 13
creator Anh, P. K.
Castro, L. P.
Thao, P. T.
Tuan, N. M.
description Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.
doi_str_mv 10.1007/s11760-019-01432-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2244703814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2244703814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2f7ba9e2562b4c1fea332c45163feaecef5a970c64635cbbc17ea4d66e8a52fd3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLgsu4f8FTwXM132qOsrgqiIOs5pOlEs_TLpKv4702t6M2BYYbhvTe8h9ApwecEY3URCVES55iUqTmjuThAC1JIlhNFyOHvjtkxWsW4w6kYVYUsFujqAT6yaNqh8d1LNr5CH6DNTFdn7b4ZfTpbM_p3yJxvRggTyHcTLts8bbZZ3bfGdyfoyJkmwupnLtHz5nq7vs3vH2_u1pf3uWVFOebUqcqUQIWkFbfEgWGMWi6IZGkHC06YUmEruWTCVpUlCgyvpYTCCOpqtkRns-4Q-rc9xFHv-n3o0ktNKefJYJH8LxGdUTb0MQZwegi-NeFTE6ynwPQcmE6B6e_AtEgkNpPiMJmE8Cf9D-sLKQVtxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244703814</pqid></control><display><type>article</type><title>New sampling theorem and multiplicative filtering in the FRFT domain</title><source>Springer Nature - Complete Springer Journals</source><creator>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</creator><creatorcontrib>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</creatorcontrib><description>Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-019-01432-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Convolution ; Fast Fourier transformations ; Filtration ; Fourier transforms ; Frequencies ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Sampling ; Shannon theorem ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2019-07, Vol.13 (5), p.951-958</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2f7ba9e2562b4c1fea332c45163feaecef5a970c64635cbbc17ea4d66e8a52fd3</citedby><cites>FETCH-LOGICAL-c389t-2f7ba9e2562b4c1fea332c45163feaecef5a970c64635cbbc17ea4d66e8a52fd3</cites><orcidid>0000-0002-4261-8699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-019-01432-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-019-01432-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Anh, P. K.</creatorcontrib><creatorcontrib>Castro, L. P.</creatorcontrib><creatorcontrib>Thao, P. T.</creatorcontrib><creatorcontrib>Tuan, N. M.</creatorcontrib><title>New sampling theorem and multiplicative filtering in the FRFT domain</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Fast Fourier transformations</subject><subject>Filtration</subject><subject>Fourier transforms</subject><subject>Frequencies</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Sampling</subject><subject>Shannon theorem</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLgsu4f8FTwXM132qOsrgqiIOs5pOlEs_TLpKv4702t6M2BYYbhvTe8h9ApwecEY3URCVES55iUqTmjuThAC1JIlhNFyOHvjtkxWsW4w6kYVYUsFujqAT6yaNqh8d1LNr5CH6DNTFdn7b4ZfTpbM_p3yJxvRggTyHcTLts8bbZZ3bfGdyfoyJkmwupnLtHz5nq7vs3vH2_u1pf3uWVFOebUqcqUQIWkFbfEgWGMWi6IZGkHC06YUmEruWTCVpUlCgyvpYTCCOpqtkRns-4Q-rc9xFHv-n3o0ktNKefJYJH8LxGdUTb0MQZwegi-NeFTE6ynwPQcmE6B6e_AtEgkNpPiMJmE8Cf9D-sLKQVtxw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Anh, P. K.</creator><creator>Castro, L. P.</creator><creator>Thao, P. T.</creator><creator>Tuan, N. M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4261-8699</orcidid></search><sort><creationdate>20190701</creationdate><title>New sampling theorem and multiplicative filtering in the FRFT domain</title><author>Anh, P. K. ; Castro, L. P. ; Thao, P. T. ; Tuan, N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2f7ba9e2562b4c1fea332c45163feaecef5a970c64635cbbc17ea4d66e8a52fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Fast Fourier transformations</topic><topic>Filtration</topic><topic>Fourier transforms</topic><topic>Frequencies</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Sampling</topic><topic>Shannon theorem</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anh, P. K.</creatorcontrib><creatorcontrib>Castro, L. P.</creatorcontrib><creatorcontrib>Thao, P. T.</creatorcontrib><creatorcontrib>Tuan, N. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anh, P. K.</au><au>Castro, L. P.</au><au>Thao, P. T.</au><au>Tuan, N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New sampling theorem and multiplicative filtering in the FRFT domain</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>951</spage><epage>958</epage><pages>951-958</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-019-01432-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4261-8699</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2019-07, Vol.13 (5), p.951-958
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2244703814
source Springer Nature - Complete Springer Journals
subjects Computer Imaging
Computer Science
Convolution
Fast Fourier transformations
Filtration
Fourier transforms
Frequencies
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Sampling
Shannon theorem
Signal,Image and Speech Processing
Vision
title New sampling theorem and multiplicative filtering in the FRFT domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20sampling%20theorem%20and%20multiplicative%20filtering%20in%20the%20FRFT%20domain&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Anh,%20P.%20K.&rft.date=2019-07-01&rft.volume=13&rft.issue=5&rft.spage=951&rft.epage=958&rft.pages=951-958&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-019-01432-5&rft_dat=%3Cproquest_cross%3E2244703814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244703814&rft_id=info:pmid/&rfr_iscdi=true