The orientation order of liquid‐crystalline polymer, measured by ESR and optical dichroism techniques

ABSTRACT Molecular orientation order and rotation mobility of comb‐shaped liquid crystalline polymer forming nematic and smectic mesophases are characterized by spin probe and dichroism technique in the temperature range 100–420 K. The models describing the mechanism of molecular rotations in differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2019-07, Vol.57 (13), p.819-825
Hauptverfasser: Bogdanov, Alexey V., Bobrovsky, Alexey Yu, Vorobiev, Andrey Kh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 13
container_start_page 819
container_title Journal of polymer science. Part B, Polymer physics
container_volume 57
creator Bogdanov, Alexey V.
Bobrovsky, Alexey Yu
Vorobiev, Andrey Kh
description ABSTRACT Molecular orientation order and rotation mobility of comb‐shaped liquid crystalline polymer forming nematic and smectic mesophases are characterized by spin probe and dichroism technique in the temperature range 100–420 K. The models describing the mechanism of molecular rotations in different temperature ranges were determined by quantitative numerical simulations of ESR spectra. In the vicinity of the glass transition point of the polymer, where the fast amplitude‐restricted molecular reorientations take place, the quasi‐libration model was found to be adequate for the description of ESR spectra, while the often used Brownian rotational diffusion is appropriate at higher temperatures only. Orientation distribution function of probe molecules was characterized quantitatively by order parameters up to sixth rank for a wide temperature range. The orientation order parameters measured via the spin probe technique are shown to correlate with orientation order parameters measured by optical techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 819–825 The orientation order of a liquid‐crystalline polymer exhibiting a number of nematic and smectic mesophases is measured using a number of paramagnetic and optical molecular probes.
doi_str_mv 10.1002/polb.24836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2244670215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2244670215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3386-e4fa529ca0eac33253ed8f6bb62baeb400a34de625d9f1a9c199babef16d38f3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4QSW2CFSbCdx4yWg8iNVKoLuLceeUFdJHOxUKDuOwBk5CS5hzWpG8755T3oInVMyo4Sw687V5YxlRcoP0IQSIRKSFcUhmpCimCeccX6MTkLYEhK1XEzQ23oD2HkLba9669q4G_DYVbi27ztrvj-_tB9Cr-ratoCj_9CAv8INqLDzYHA54MXrC1atwa7rrVY1NlZvvLOhwT3oTRt9IJyio0rVAc7-5hSt7xfru8dkuXp4urtZJjpNC55AVqmcCa0IqHhheQqmqHhZclYqKDNCVJoZ4Cw3oqJKaCpEqUqoKDdpUaVTdDHadt7tY3u5dTvfxkTJWJbxOWE0j9TlSGnvQvBQyc7bRvlBUiL3Pcp9j_K3xwjTEf6wNQz_kPJ5tbwdf34Ah_N5Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244670215</pqid></control><display><type>article</type><title>The orientation order of liquid‐crystalline polymer, measured by ESR and optical dichroism techniques</title><source>Wiley Online Library All Journals</source><creator>Bogdanov, Alexey V. ; Bobrovsky, Alexey Yu ; Vorobiev, Andrey Kh</creator><creatorcontrib>Bogdanov, Alexey V. ; Bobrovsky, Alexey Yu ; Vorobiev, Andrey Kh</creatorcontrib><description>ABSTRACT Molecular orientation order and rotation mobility of comb‐shaped liquid crystalline polymer forming nematic and smectic mesophases are characterized by spin probe and dichroism technique in the temperature range 100–420 K. The models describing the mechanism of molecular rotations in different temperature ranges were determined by quantitative numerical simulations of ESR spectra. In the vicinity of the glass transition point of the polymer, where the fast amplitude‐restricted molecular reorientations take place, the quasi‐libration model was found to be adequate for the description of ESR spectra, while the often used Brownian rotational diffusion is appropriate at higher temperatures only. Orientation distribution function of probe molecules was characterized quantitatively by order parameters up to sixth rank for a wide temperature range. The orientation order parameters measured via the spin probe technique are shown to correlate with orientation order parameters measured by optical techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 819–825 The orientation order of a liquid‐crystalline polymer exhibiting a number of nematic and smectic mesophases is measured using a number of paramagnetic and optical molecular probes.</description><identifier>ISSN: 0887-6266</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.24836</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Computer simulation ; Correlation analysis ; Crystal structure ; Crystallinity ; Dichroism ; Distribution functions ; Libration ; Liquid crystals ; liquid‐crystalline polymers ; Mathematical models ; molecular mobility ; Nematic crystals ; Optics ; Order parameters ; Orientation ; orientation order ; Polymers ; Rotational spectra ; spin probe ; Temperature ; Transition points</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 2019-07, Vol.57 (13), p.819-825</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3386-e4fa529ca0eac33253ed8f6bb62baeb400a34de625d9f1a9c199babef16d38f3</citedby><cites>FETCH-LOGICAL-c3386-e4fa529ca0eac33253ed8f6bb62baeb400a34de625d9f1a9c199babef16d38f3</cites><orcidid>0000-0003-1044-4783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.24836$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.24836$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Bogdanov, Alexey V.</creatorcontrib><creatorcontrib>Bobrovsky, Alexey Yu</creatorcontrib><creatorcontrib>Vorobiev, Andrey Kh</creatorcontrib><title>The orientation order of liquid‐crystalline polymer, measured by ESR and optical dichroism techniques</title><title>Journal of polymer science. Part B, Polymer physics</title><description>ABSTRACT Molecular orientation order and rotation mobility of comb‐shaped liquid crystalline polymer forming nematic and smectic mesophases are characterized by spin probe and dichroism technique in the temperature range 100–420 K. The models describing the mechanism of molecular rotations in different temperature ranges were determined by quantitative numerical simulations of ESR spectra. In the vicinity of the glass transition point of the polymer, where the fast amplitude‐restricted molecular reorientations take place, the quasi‐libration model was found to be adequate for the description of ESR spectra, while the often used Brownian rotational diffusion is appropriate at higher temperatures only. Orientation distribution function of probe molecules was characterized quantitatively by order parameters up to sixth rank for a wide temperature range. The orientation order parameters measured via the spin probe technique are shown to correlate with orientation order parameters measured by optical techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 819–825 The orientation order of a liquid‐crystalline polymer exhibiting a number of nematic and smectic mesophases is measured using a number of paramagnetic and optical molecular probes.</description><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dichroism</subject><subject>Distribution functions</subject><subject>Libration</subject><subject>Liquid crystals</subject><subject>liquid‐crystalline polymers</subject><subject>Mathematical models</subject><subject>molecular mobility</subject><subject>Nematic crystals</subject><subject>Optics</subject><subject>Order parameters</subject><subject>Orientation</subject><subject>orientation order</subject><subject>Polymers</subject><subject>Rotational spectra</subject><subject>spin probe</subject><subject>Temperature</subject><subject>Transition points</subject><issn>0887-6266</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4QSW2CFSbCdx4yWg8iNVKoLuLceeUFdJHOxUKDuOwBk5CS5hzWpG8755T3oInVMyo4Sw687V5YxlRcoP0IQSIRKSFcUhmpCimCeccX6MTkLYEhK1XEzQ23oD2HkLba9669q4G_DYVbi27ztrvj-_tB9Cr-ratoCj_9CAv8INqLDzYHA54MXrC1atwa7rrVY1NlZvvLOhwT3oTRt9IJyio0rVAc7-5hSt7xfru8dkuXp4urtZJjpNC55AVqmcCa0IqHhheQqmqHhZclYqKDNCVJoZ4Cw3oqJKaCpEqUqoKDdpUaVTdDHadt7tY3u5dTvfxkTJWJbxOWE0j9TlSGnvQvBQyc7bRvlBUiL3Pcp9j_K3xwjTEf6wNQz_kPJ5tbwdf34Ah_N5Bg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Bogdanov, Alexey V.</creator><creator>Bobrovsky, Alexey Yu</creator><creator>Vorobiev, Andrey Kh</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1044-4783</orcidid></search><sort><creationdate>20190701</creationdate><title>The orientation order of liquid‐crystalline polymer, measured by ESR and optical dichroism techniques</title><author>Bogdanov, Alexey V. ; Bobrovsky, Alexey Yu ; Vorobiev, Andrey Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3386-e4fa529ca0eac33253ed8f6bb62baeb400a34de625d9f1a9c199babef16d38f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dichroism</topic><topic>Distribution functions</topic><topic>Libration</topic><topic>Liquid crystals</topic><topic>liquid‐crystalline polymers</topic><topic>Mathematical models</topic><topic>molecular mobility</topic><topic>Nematic crystals</topic><topic>Optics</topic><topic>Order parameters</topic><topic>Orientation</topic><topic>orientation order</topic><topic>Polymers</topic><topic>Rotational spectra</topic><topic>spin probe</topic><topic>Temperature</topic><topic>Transition points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogdanov, Alexey V.</creatorcontrib><creatorcontrib>Bobrovsky, Alexey Yu</creatorcontrib><creatorcontrib>Vorobiev, Andrey Kh</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogdanov, Alexey V.</au><au>Bobrovsky, Alexey Yu</au><au>Vorobiev, Andrey Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The orientation order of liquid‐crystalline polymer, measured by ESR and optical dichroism techniques</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>57</volume><issue>13</issue><spage>819</spage><epage>825</epage><pages>819-825</pages><issn>0887-6266</issn><eissn>1099-0488</eissn><abstract>ABSTRACT Molecular orientation order and rotation mobility of comb‐shaped liquid crystalline polymer forming nematic and smectic mesophases are characterized by spin probe and dichroism technique in the temperature range 100–420 K. The models describing the mechanism of molecular rotations in different temperature ranges were determined by quantitative numerical simulations of ESR spectra. In the vicinity of the glass transition point of the polymer, where the fast amplitude‐restricted molecular reorientations take place, the quasi‐libration model was found to be adequate for the description of ESR spectra, while the often used Brownian rotational diffusion is appropriate at higher temperatures only. Orientation distribution function of probe molecules was characterized quantitatively by order parameters up to sixth rank for a wide temperature range. The orientation order parameters measured via the spin probe technique are shown to correlate with orientation order parameters measured by optical techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 819–825 The orientation order of a liquid‐crystalline polymer exhibiting a number of nematic and smectic mesophases is measured using a number of paramagnetic and optical molecular probes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/polb.24836</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1044-4783</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 2019-07, Vol.57 (13), p.819-825
issn 0887-6266
1099-0488
language eng
recordid cdi_proquest_journals_2244670215
source Wiley Online Library All Journals
subjects Computer simulation
Correlation analysis
Crystal structure
Crystallinity
Dichroism
Distribution functions
Libration
Liquid crystals
liquid‐crystalline polymers
Mathematical models
molecular mobility
Nematic crystals
Optics
Order parameters
Orientation
orientation order
Polymers
Rotational spectra
spin probe
Temperature
Transition points
title The orientation order of liquid‐crystalline polymer, measured by ESR and optical dichroism techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20orientation%20order%20of%20liquid%E2%80%90crystalline%20polymer,%20measured%20by%20ESR%20and%20optical%20dichroism%20techniques&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Bogdanov,%20Alexey%20V.&rft.date=2019-07-01&rft.volume=57&rft.issue=13&rft.spage=819&rft.epage=825&rft.pages=819-825&rft.issn=0887-6266&rft.eissn=1099-0488&rft_id=info:doi/10.1002/polb.24836&rft_dat=%3Cproquest_cross%3E2244670215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244670215&rft_id=info:pmid/&rfr_iscdi=true