Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface

Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coheren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2019-07, Vol.13 (7), p.467-472
Hauptverfasser: Hu, Guangwei, Hong, Xuanmiao, Wang, Kai, Wu, Jing, Xu, He-Xiu, Zhao, Wenchao, Liu, Weiwei, Zhang, Shuang, Garcia-Vidal, Francisco, Wang, Bing, Lu, Peixiang, Qiu, Cheng-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 472
container_issue 7
container_start_page 467
container_title Nature photonics
container_volume 13
creator Hu, Guangwei
Hong, Xuanmiao
Wang, Kai
Wu, Jing
Xu, He-Xiu
Zhao, Wenchao
Liu, Weiwei
Zhang, Shuang
Garcia-Vidal, Francisco
Wang, Bing
Lu, Peixiang
Qiu, Cheng-Wei
description Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coherence between the pumping and emission makes exploring nonlinear valleytronic devices based on TMDCs challenging. Here, we show that a synthetic metasurface, which entangles the phase and spin of light, can simultaneously enhance and manipulate nonlinear valley-locked chiral emission in monolayer tungsten disulfide (WS 2 ) at room temperature. The second-harmonic valley photons, accessed and coherently pumped by light, with a spin-related geometric phase imparted by a gold (Au) metasurface, are separated and routed to predetermined directions in free space. In addition, the nonlinear photons with the same spin as the incident light are steered owing to the critical spin–valley-locked nonlinear selection rule of WS 2 in our designed metasurface. Our synthetic TMDC–metasurface interface may facilitate advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices. By entangling the phase and spin of light, a synthetic metasurface is shown to be able to coherently manipulate the valley-exciton-locked chiral emission in monolayer tungsten disulfide at room temperature. The findings will be of benefit to advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.
doi_str_mv 10.1038/s41566-019-0399-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2244645359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2244645359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e5b3a4374d370bd14d0faed48c50e205015de06daa3a6b01d1ea7053046261fc3</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhgdRsFYfwN2A6-iZWy7LUrxBwYWK4GaYJicmJZ2JMxOlO9_BN_RJTKnoytX5F__l8BFyyuCcgcgvgmQqTRNgRQKiKBK2RyYsk0Ui80Ls_-pcHZKjEFYAShScT8jz3DXo0UYaIqJv7Qt1NbXOdq1F42nZtN509M10HW5o37jobKDvbWyooWFjY4OxLels-Pr4fLrndI3RhMHXpsRjclCbLuDJz52Sx6vLh_lNsri7vp3PFkkpVBETVEthpMhkJTJYVkxWUBusZF4qQA4KmKoQ0soYYdIlsIqhycb3QaY8ZXUppuRs19t79zpgiHrlBm_HSc25lKlU487oYjtX6V0IHmvd-3Zt_EYz0FuEeodQjwj1FqFmY4bvMqHfkkH_1_x_6BudQnVX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244645359</pqid></control><display><type>article</type><title>Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Hu, Guangwei ; Hong, Xuanmiao ; Wang, Kai ; Wu, Jing ; Xu, He-Xiu ; Zhao, Wenchao ; Liu, Weiwei ; Zhang, Shuang ; Garcia-Vidal, Francisco ; Wang, Bing ; Lu, Peixiang ; Qiu, Cheng-Wei</creator><creatorcontrib>Hu, Guangwei ; Hong, Xuanmiao ; Wang, Kai ; Wu, Jing ; Xu, He-Xiu ; Zhao, Wenchao ; Liu, Weiwei ; Zhang, Shuang ; Garcia-Vidal, Francisco ; Wang, Bing ; Lu, Peixiang ; Qiu, Cheng-Wei</creatorcontrib><description>Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coherence between the pumping and emission makes exploring nonlinear valleytronic devices based on TMDCs challenging. Here, we show that a synthetic metasurface, which entangles the phase and spin of light, can simultaneously enhance and manipulate nonlinear valley-locked chiral emission in monolayer tungsten disulfide (WS 2 ) at room temperature. The second-harmonic valley photons, accessed and coherently pumped by light, with a spin-related geometric phase imparted by a gold (Au) metasurface, are separated and routed to predetermined directions in free space. In addition, the nonlinear photons with the same spin as the incident light are steered owing to the critical spin–valley-locked nonlinear selection rule of WS 2 in our designed metasurface. Our synthetic TMDC–metasurface interface may facilitate advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices. By entangling the phase and spin of light, a synthetic metasurface is shown to be able to coherently manipulate the valley-exciton-locked chiral emission in monolayer tungsten disulfide at room temperature. The findings will be of benefit to advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-019-0399-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 142/126 ; 639/301/357 ; 639/624/399 ; 639/624/400/1021 ; 639/766/400/385 ; Applied and Technical Physics ; Coherence ; Emission ; Emissions ; Excitons ; Gold ; Incident light ; Metasurfaces ; Nanotechnology devices ; Optical pumping ; Photoluminescence ; Photons ; Physics ; Physics and Astronomy ; Quantum Physics ; Steering ; Transition metal compounds ; Tungsten ; Tungsten disulfide ; Valleys</subject><ispartof>Nature photonics, 2019-07, Vol.13 (7), p.467-472</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e5b3a4374d370bd14d0faed48c50e205015de06daa3a6b01d1ea7053046261fc3</citedby><cites>FETCH-LOGICAL-c359t-e5b3a4374d370bd14d0faed48c50e205015de06daa3a6b01d1ea7053046261fc3</cites><orcidid>0000-0002-4182-6701 ; 0000-0002-6605-500X ; 0000-0001-6993-8986 ; 0000-0002-3023-9632 ; 0000-0003-2122-1294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-019-0399-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-019-0399-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hu, Guangwei</creatorcontrib><creatorcontrib>Hong, Xuanmiao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Xu, He-Xiu</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Zhang, Shuang</creatorcontrib><creatorcontrib>Garcia-Vidal, Francisco</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><creatorcontrib>Qiu, Cheng-Wei</creatorcontrib><title>Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coherence between the pumping and emission makes exploring nonlinear valleytronic devices based on TMDCs challenging. Here, we show that a synthetic metasurface, which entangles the phase and spin of light, can simultaneously enhance and manipulate nonlinear valley-locked chiral emission in monolayer tungsten disulfide (WS 2 ) at room temperature. The second-harmonic valley photons, accessed and coherently pumped by light, with a spin-related geometric phase imparted by a gold (Au) metasurface, are separated and routed to predetermined directions in free space. In addition, the nonlinear photons with the same spin as the incident light are steered owing to the critical spin–valley-locked nonlinear selection rule of WS 2 in our designed metasurface. Our synthetic TMDC–metasurface interface may facilitate advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices. By entangling the phase and spin of light, a synthetic metasurface is shown to be able to coherently manipulate the valley-exciton-locked chiral emission in monolayer tungsten disulfide at room temperature. The findings will be of benefit to advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.</description><subject>132/124</subject><subject>142/126</subject><subject>639/301/357</subject><subject>639/624/399</subject><subject>639/624/400/1021</subject><subject>639/766/400/385</subject><subject>Applied and Technical Physics</subject><subject>Coherence</subject><subject>Emission</subject><subject>Emissions</subject><subject>Excitons</subject><subject>Gold</subject><subject>Incident light</subject><subject>Metasurfaces</subject><subject>Nanotechnology devices</subject><subject>Optical pumping</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Steering</subject><subject>Transition metal compounds</subject><subject>Tungsten</subject><subject>Tungsten disulfide</subject><subject>Valleys</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKw0AUhgdRsFYfwN2A6-iZWy7LUrxBwYWK4GaYJicmJZ2JMxOlO9_BN_RJTKnoytX5F__l8BFyyuCcgcgvgmQqTRNgRQKiKBK2RyYsk0Ui80Ls_-pcHZKjEFYAShScT8jz3DXo0UYaIqJv7Qt1NbXOdq1F42nZtN509M10HW5o37jobKDvbWyooWFjY4OxLels-Pr4fLrndI3RhMHXpsRjclCbLuDJz52Sx6vLh_lNsri7vp3PFkkpVBETVEthpMhkJTJYVkxWUBusZF4qQA4KmKoQ0soYYdIlsIqhycb3QaY8ZXUppuRs19t79zpgiHrlBm_HSc25lKlU487oYjtX6V0IHmvd-3Zt_EYz0FuEeodQjwj1FqFmY4bvMqHfkkH_1_x_6BudQnVX</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Hu, Guangwei</creator><creator>Hong, Xuanmiao</creator><creator>Wang, Kai</creator><creator>Wu, Jing</creator><creator>Xu, He-Xiu</creator><creator>Zhao, Wenchao</creator><creator>Liu, Weiwei</creator><creator>Zhang, Shuang</creator><creator>Garcia-Vidal, Francisco</creator><creator>Wang, Bing</creator><creator>Lu, Peixiang</creator><creator>Qiu, Cheng-Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4182-6701</orcidid><orcidid>https://orcid.org/0000-0002-6605-500X</orcidid><orcidid>https://orcid.org/0000-0001-6993-8986</orcidid><orcidid>https://orcid.org/0000-0002-3023-9632</orcidid><orcidid>https://orcid.org/0000-0003-2122-1294</orcidid></search><sort><creationdate>20190701</creationdate><title>Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface</title><author>Hu, Guangwei ; Hong, Xuanmiao ; Wang, Kai ; Wu, Jing ; Xu, He-Xiu ; Zhao, Wenchao ; Liu, Weiwei ; Zhang, Shuang ; Garcia-Vidal, Francisco ; Wang, Bing ; Lu, Peixiang ; Qiu, Cheng-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e5b3a4374d370bd14d0faed48c50e205015de06daa3a6b01d1ea7053046261fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>132/124</topic><topic>142/126</topic><topic>639/301/357</topic><topic>639/624/399</topic><topic>639/624/400/1021</topic><topic>639/766/400/385</topic><topic>Applied and Technical Physics</topic><topic>Coherence</topic><topic>Emission</topic><topic>Emissions</topic><topic>Excitons</topic><topic>Gold</topic><topic>Incident light</topic><topic>Metasurfaces</topic><topic>Nanotechnology devices</topic><topic>Optical pumping</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Steering</topic><topic>Transition metal compounds</topic><topic>Tungsten</topic><topic>Tungsten disulfide</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Guangwei</creatorcontrib><creatorcontrib>Hong, Xuanmiao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Xu, He-Xiu</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Zhang, Shuang</creatorcontrib><creatorcontrib>Garcia-Vidal, Francisco</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><creatorcontrib>Qiu, Cheng-Wei</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Guangwei</au><au>Hong, Xuanmiao</au><au>Wang, Kai</au><au>Wu, Jing</au><au>Xu, He-Xiu</au><au>Zhao, Wenchao</au><au>Liu, Weiwei</au><au>Zhang, Shuang</au><au>Garcia-Vidal, Francisco</au><au>Wang, Bing</au><au>Lu, Peixiang</au><au>Qiu, Cheng-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>13</volume><issue>7</issue><spage>467</spage><epage>472</epage><pages>467-472</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coherence between the pumping and emission makes exploring nonlinear valleytronic devices based on TMDCs challenging. Here, we show that a synthetic metasurface, which entangles the phase and spin of light, can simultaneously enhance and manipulate nonlinear valley-locked chiral emission in monolayer tungsten disulfide (WS 2 ) at room temperature. The second-harmonic valley photons, accessed and coherently pumped by light, with a spin-related geometric phase imparted by a gold (Au) metasurface, are separated and routed to predetermined directions in free space. In addition, the nonlinear photons with the same spin as the incident light are steered owing to the critical spin–valley-locked nonlinear selection rule of WS 2 in our designed metasurface. Our synthetic TMDC–metasurface interface may facilitate advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices. By entangling the phase and spin of light, a synthetic metasurface is shown to be able to coherently manipulate the valley-exciton-locked chiral emission in monolayer tungsten disulfide at room temperature. The findings will be of benefit to advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-019-0399-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4182-6701</orcidid><orcidid>https://orcid.org/0000-0002-6605-500X</orcidid><orcidid>https://orcid.org/0000-0001-6993-8986</orcidid><orcidid>https://orcid.org/0000-0002-3023-9632</orcidid><orcidid>https://orcid.org/0000-0003-2122-1294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2019-07, Vol.13 (7), p.467-472
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2244645359
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 132/124
142/126
639/301/357
639/624/399
639/624/400/1021
639/766/400/385
Applied and Technical Physics
Coherence
Emission
Emissions
Excitons
Gold
Incident light
Metasurfaces
Nanotechnology devices
Optical pumping
Photoluminescence
Photons
Physics
Physics and Astronomy
Quantum Physics
Steering
Transition metal compounds
Tungsten
Tungsten disulfide
Valleys
title Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20steering%20of%20nonlinear%20chiral%20valley%20photons%20with%20a%20synthetic%20Au%E2%80%93WS2%20metasurface&rft.jtitle=Nature%20photonics&rft.au=Hu,%20Guangwei&rft.date=2019-07-01&rft.volume=13&rft.issue=7&rft.spage=467&rft.epage=472&rft.pages=467-472&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-019-0399-1&rft_dat=%3Cproquest_cross%3E2244645359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244645359&rft_id=info:pmid/&rfr_iscdi=true