Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface
Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coheren...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2019-07, Vol.13 (7), p.467-472 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 472 |
---|---|
container_issue | 7 |
container_start_page | 467 |
container_title | Nature photonics |
container_volume | 13 |
creator | Hu, Guangwei Hong, Xuanmiao Wang, Kai Wu, Jing Xu, He-Xiu Zhao, Wenchao Liu, Weiwei Zhang, Shuang Garcia-Vidal, Francisco Wang, Bing Lu, Peixiang Qiu, Cheng-Wei |
description | Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coherence between the pumping and emission makes exploring nonlinear valleytronic devices based on TMDCs challenging. Here, we show that a synthetic metasurface, which entangles the phase and spin of light, can simultaneously enhance and manipulate nonlinear valley-locked chiral emission in monolayer tungsten disulfide (WS
2
) at room temperature. The second-harmonic valley photons, accessed and coherently pumped by light, with a spin-related geometric phase imparted by a gold (Au) metasurface, are separated and routed to predetermined directions in free space. In addition, the nonlinear photons with the same spin as the incident light are steered owing to the critical spin–valley-locked nonlinear selection rule of WS
2
in our designed metasurface. Our synthetic TMDC–metasurface interface may facilitate advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.
By entangling the phase and spin of light, a synthetic metasurface is shown to be able to coherently manipulate the valley-exciton-locked chiral emission in monolayer tungsten disulfide at room temperature. The findings will be of benefit to advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices. |
doi_str_mv | 10.1038/s41566-019-0399-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2244645359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2244645359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e5b3a4374d370bd14d0faed48c50e205015de06daa3a6b01d1ea7053046261fc3</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhgdRsFYfwN2A6-iZWy7LUrxBwYWK4GaYJicmJZ2JMxOlO9_BN_RJTKnoytX5F__l8BFyyuCcgcgvgmQqTRNgRQKiKBK2RyYsk0Ui80Ls_-pcHZKjEFYAShScT8jz3DXo0UYaIqJv7Qt1NbXOdq1F42nZtN509M10HW5o37jobKDvbWyooWFjY4OxLels-Pr4fLrndI3RhMHXpsRjclCbLuDJz52Sx6vLh_lNsri7vp3PFkkpVBETVEthpMhkJTJYVkxWUBusZF4qQA4KmKoQ0soYYdIlsIqhycb3QaY8ZXUppuRs19t79zpgiHrlBm_HSc25lKlU487oYjtX6V0IHmvd-3Zt_EYz0FuEeodQjwj1FqFmY4bvMqHfkkH_1_x_6BudQnVX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244645359</pqid></control><display><type>article</type><title>Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Hu, Guangwei ; Hong, Xuanmiao ; Wang, Kai ; Wu, Jing ; Xu, He-Xiu ; Zhao, Wenchao ; Liu, Weiwei ; Zhang, Shuang ; Garcia-Vidal, Francisco ; Wang, Bing ; Lu, Peixiang ; Qiu, Cheng-Wei</creator><creatorcontrib>Hu, Guangwei ; Hong, Xuanmiao ; Wang, Kai ; Wu, Jing ; Xu, He-Xiu ; Zhao, Wenchao ; Liu, Weiwei ; Zhang, Shuang ; Garcia-Vidal, Francisco ; Wang, Bing ; Lu, Peixiang ; Qiu, Cheng-Wei</creatorcontrib><description>Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coherence between the pumping and emission makes exploring nonlinear valleytronic devices based on TMDCs challenging. Here, we show that a synthetic metasurface, which entangles the phase and spin of light, can simultaneously enhance and manipulate nonlinear valley-locked chiral emission in monolayer tungsten disulfide (WS
2
) at room temperature. The second-harmonic valley photons, accessed and coherently pumped by light, with a spin-related geometric phase imparted by a gold (Au) metasurface, are separated and routed to predetermined directions in free space. In addition, the nonlinear photons with the same spin as the incident light are steered owing to the critical spin–valley-locked nonlinear selection rule of WS
2
in our designed metasurface. Our synthetic TMDC–metasurface interface may facilitate advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.
By entangling the phase and spin of light, a synthetic metasurface is shown to be able to coherently manipulate the valley-exciton-locked chiral emission in monolayer tungsten disulfide at room temperature. The findings will be of benefit to advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-019-0399-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 142/126 ; 639/301/357 ; 639/624/399 ; 639/624/400/1021 ; 639/766/400/385 ; Applied and Technical Physics ; Coherence ; Emission ; Emissions ; Excitons ; Gold ; Incident light ; Metasurfaces ; Nanotechnology devices ; Optical pumping ; Photoluminescence ; Photons ; Physics ; Physics and Astronomy ; Quantum Physics ; Steering ; Transition metal compounds ; Tungsten ; Tungsten disulfide ; Valleys</subject><ispartof>Nature photonics, 2019-07, Vol.13 (7), p.467-472</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e5b3a4374d370bd14d0faed48c50e205015de06daa3a6b01d1ea7053046261fc3</citedby><cites>FETCH-LOGICAL-c359t-e5b3a4374d370bd14d0faed48c50e205015de06daa3a6b01d1ea7053046261fc3</cites><orcidid>0000-0002-4182-6701 ; 0000-0002-6605-500X ; 0000-0001-6993-8986 ; 0000-0002-3023-9632 ; 0000-0003-2122-1294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-019-0399-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-019-0399-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hu, Guangwei</creatorcontrib><creatorcontrib>Hong, Xuanmiao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Xu, He-Xiu</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Zhang, Shuang</creatorcontrib><creatorcontrib>Garcia-Vidal, Francisco</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><creatorcontrib>Qiu, Cheng-Wei</creatorcontrib><title>Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface</title><title>Nature photonics</title><addtitle>Nat. Photonics</addtitle><description>Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coherence between the pumping and emission makes exploring nonlinear valleytronic devices based on TMDCs challenging. Here, we show that a synthetic metasurface, which entangles the phase and spin of light, can simultaneously enhance and manipulate nonlinear valley-locked chiral emission in monolayer tungsten disulfide (WS
2
) at room temperature. The second-harmonic valley photons, accessed and coherently pumped by light, with a spin-related geometric phase imparted by a gold (Au) metasurface, are separated and routed to predetermined directions in free space. In addition, the nonlinear photons with the same spin as the incident light are steered owing to the critical spin–valley-locked nonlinear selection rule of WS
2
in our designed metasurface. Our synthetic TMDC–metasurface interface may facilitate advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.
By entangling the phase and spin of light, a synthetic metasurface is shown to be able to coherently manipulate the valley-exciton-locked chiral emission in monolayer tungsten disulfide at room temperature. The findings will be of benefit to advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.</description><subject>132/124</subject><subject>142/126</subject><subject>639/301/357</subject><subject>639/624/399</subject><subject>639/624/400/1021</subject><subject>639/766/400/385</subject><subject>Applied and Technical Physics</subject><subject>Coherence</subject><subject>Emission</subject><subject>Emissions</subject><subject>Excitons</subject><subject>Gold</subject><subject>Incident light</subject><subject>Metasurfaces</subject><subject>Nanotechnology devices</subject><subject>Optical pumping</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Steering</subject><subject>Transition metal compounds</subject><subject>Tungsten</subject><subject>Tungsten disulfide</subject><subject>Valleys</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKw0AUhgdRsFYfwN2A6-iZWy7LUrxBwYWK4GaYJicmJZ2JMxOlO9_BN_RJTKnoytX5F__l8BFyyuCcgcgvgmQqTRNgRQKiKBK2RyYsk0Ui80Ls_-pcHZKjEFYAShScT8jz3DXo0UYaIqJv7Qt1NbXOdq1F42nZtN509M10HW5o37jobKDvbWyooWFjY4OxLels-Pr4fLrndI3RhMHXpsRjclCbLuDJz52Sx6vLh_lNsri7vp3PFkkpVBETVEthpMhkJTJYVkxWUBusZF4qQA4KmKoQ0soYYdIlsIqhycb3QaY8ZXUppuRs19t79zpgiHrlBm_HSc25lKlU487oYjtX6V0IHmvd-3Zt_EYz0FuEeodQjwj1FqFmY4bvMqHfkkH_1_x_6BudQnVX</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Hu, Guangwei</creator><creator>Hong, Xuanmiao</creator><creator>Wang, Kai</creator><creator>Wu, Jing</creator><creator>Xu, He-Xiu</creator><creator>Zhao, Wenchao</creator><creator>Liu, Weiwei</creator><creator>Zhang, Shuang</creator><creator>Garcia-Vidal, Francisco</creator><creator>Wang, Bing</creator><creator>Lu, Peixiang</creator><creator>Qiu, Cheng-Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4182-6701</orcidid><orcidid>https://orcid.org/0000-0002-6605-500X</orcidid><orcidid>https://orcid.org/0000-0001-6993-8986</orcidid><orcidid>https://orcid.org/0000-0002-3023-9632</orcidid><orcidid>https://orcid.org/0000-0003-2122-1294</orcidid></search><sort><creationdate>20190701</creationdate><title>Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface</title><author>Hu, Guangwei ; Hong, Xuanmiao ; Wang, Kai ; Wu, Jing ; Xu, He-Xiu ; Zhao, Wenchao ; Liu, Weiwei ; Zhang, Shuang ; Garcia-Vidal, Francisco ; Wang, Bing ; Lu, Peixiang ; Qiu, Cheng-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e5b3a4374d370bd14d0faed48c50e205015de06daa3a6b01d1ea7053046261fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>132/124</topic><topic>142/126</topic><topic>639/301/357</topic><topic>639/624/399</topic><topic>639/624/400/1021</topic><topic>639/766/400/385</topic><topic>Applied and Technical Physics</topic><topic>Coherence</topic><topic>Emission</topic><topic>Emissions</topic><topic>Excitons</topic><topic>Gold</topic><topic>Incident light</topic><topic>Metasurfaces</topic><topic>Nanotechnology devices</topic><topic>Optical pumping</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Steering</topic><topic>Transition metal compounds</topic><topic>Tungsten</topic><topic>Tungsten disulfide</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Guangwei</creatorcontrib><creatorcontrib>Hong, Xuanmiao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><creatorcontrib>Xu, He-Xiu</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Liu, Weiwei</creatorcontrib><creatorcontrib>Zhang, Shuang</creatorcontrib><creatorcontrib>Garcia-Vidal, Francisco</creatorcontrib><creatorcontrib>Wang, Bing</creatorcontrib><creatorcontrib>Lu, Peixiang</creatorcontrib><creatorcontrib>Qiu, Cheng-Wei</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Guangwei</au><au>Hong, Xuanmiao</au><au>Wang, Kai</au><au>Wu, Jing</au><au>Xu, He-Xiu</au><au>Zhao, Wenchao</au><au>Liu, Weiwei</au><au>Zhang, Shuang</au><au>Garcia-Vidal, Francisco</au><au>Wang, Bing</au><au>Lu, Peixiang</au><au>Qiu, Cheng-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photonics</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>13</volume><issue>7</issue><spage>467</spage><epage>472</epage><pages>467-472</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Two-dimensional transition metal dichalcogenides (TMDCs) present extraordinary nonlinearities and direct bandgaps at the K and K′ valleys. These valleys can be optically manipulated through, for example, plasmon–valley-exciton coupling with spin-dependent photoluminescence. However, the weak coherence between the pumping and emission makes exploring nonlinear valleytronic devices based on TMDCs challenging. Here, we show that a synthetic metasurface, which entangles the phase and spin of light, can simultaneously enhance and manipulate nonlinear valley-locked chiral emission in monolayer tungsten disulfide (WS
2
) at room temperature. The second-harmonic valley photons, accessed and coherently pumped by light, with a spin-related geometric phase imparted by a gold (Au) metasurface, are separated and routed to predetermined directions in free space. In addition, the nonlinear photons with the same spin as the incident light are steered owing to the critical spin–valley-locked nonlinear selection rule of WS
2
in our designed metasurface. Our synthetic TMDC–metasurface interface may facilitate advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.
By entangling the phase and spin of light, a synthetic metasurface is shown to be able to coherently manipulate the valley-exciton-locked chiral emission in monolayer tungsten disulfide at room temperature. The findings will be of benefit to advanced room-temperature and free-space nonlinear, quantum and valleytronic nanodevices.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-019-0399-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4182-6701</orcidid><orcidid>https://orcid.org/0000-0002-6605-500X</orcidid><orcidid>https://orcid.org/0000-0001-6993-8986</orcidid><orcidid>https://orcid.org/0000-0002-3023-9632</orcidid><orcidid>https://orcid.org/0000-0003-2122-1294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2019-07, Vol.13 (7), p.467-472 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2244645359 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 132/124 142/126 639/301/357 639/624/399 639/624/400/1021 639/766/400/385 Applied and Technical Physics Coherence Emission Emissions Excitons Gold Incident light Metasurfaces Nanotechnology devices Optical pumping Photoluminescence Photons Physics Physics and Astronomy Quantum Physics Steering Transition metal compounds Tungsten Tungsten disulfide Valleys |
title | Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20steering%20of%20nonlinear%20chiral%20valley%20photons%20with%20a%20synthetic%20Au%E2%80%93WS2%20metasurface&rft.jtitle=Nature%20photonics&rft.au=Hu,%20Guangwei&rft.date=2019-07-01&rft.volume=13&rft.issue=7&rft.spage=467&rft.epage=472&rft.pages=467-472&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-019-0399-1&rft_dat=%3Cproquest_cross%3E2244645359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244645359&rft_id=info:pmid/&rfr_iscdi=true |