Artificial-Intelligence Method for the Derivation of Generic Aggregated Dynamic Equivalent Models

Aggregated equivalent models for the dynamic analysis of active distribution networks (ADNs) can be efficiently developed using dynamic responses recorded through field measurements. However, equivalent model parameters are highly affected from the time-varying composition of power system loads and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2019-07, Vol.34 (4), p.2947-2956
Hauptverfasser: Kontis, Eleftherios O., Papadopoulos, Theofilos A., Syed, Mazheruddin H., Guillo-Sansano, Efren, Burt, Graeme M., Papagiannis, Grigoris K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2956
container_issue 4
container_start_page 2947
container_title IEEE transactions on power systems
container_volume 34
creator Kontis, Eleftherios O.
Papadopoulos, Theofilos A.
Syed, Mazheruddin H.
Guillo-Sansano, Efren
Burt, Graeme M.
Papagiannis, Grigoris K.
description Aggregated equivalent models for the dynamic analysis of active distribution networks (ADNs) can be efficiently developed using dynamic responses recorded through field measurements. However, equivalent model parameters are highly affected from the time-varying composition of power system loads and the stochastic behavior of distributed generators. Thus, equivalent models, developed through in situ measurements, are valid only for the operating conditions from which they have been derived. To overcome this issue, in this paper, a new method is proposed for the derivation of generic aggregated dynamic equivalent models, i.e., for equivalent models that can be used for the dynamic analysis of a wide range of network conditions. The method incorporates clustering and artificial neural network techniques to derive robust sets of parameters for a variable-order dynamic equivalent model. The effectiveness of the proposed method is evaluated using measurements recorded on a laboratory-scale ADN, while its performance is compared with a conventional technique. The corresponding results reveal the applicability of the proposed approach for the analysis and simulation of a wide range of distinct network conditions.
doi_str_mv 10.1109/TPWRS.2019.2894185
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2244351442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8620372</ieee_id><sourcerecordid>2244351442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-10d6db486cd0266b915a9963815217104e04bf324bd4fdc8ed7ffc6951a95e883</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9A3rZxHNxv7t7JIBIAtEoxmOz7c5CSWlhu5jw7y1iPE1m5nlnkgehe0oGlBLztHz7ev8YMELNgGkjqJYXqEel1AlRqblEPaK1TLSR5BrdtO2GEKK6RQ_ZYYilL4vSVsmsjlBV5QrqAvAC4rpx2DcBxzXgMYTy28ayqXHj8RTqri_wcLUKsLIRHB4fa7vtRpP9oQMrqCNeNA6q9hZdeVu1cPdX--jzebIcvSTz1-lsNJwnBecmJpQ45XKhVeEIUyo3VFpjFNdUMppSIoCI3HMmcie8KzS41PtCGUmtkaA176PH891daPYHaGO2aQ6h7l5mjAnBJRWCdRQ7U0Vo2jaAz3ah3NpwzCjJTiqzX5XZSWX2p7ILPZxDJQD8B7RihKeM_wCiaXBP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244351442</pqid></control><display><type>article</type><title>Artificial-Intelligence Method for the Derivation of Generic Aggregated Dynamic Equivalent Models</title><source>IEEE Electronic Library (IEL)</source><creator>Kontis, Eleftherios O. ; Papadopoulos, Theofilos A. ; Syed, Mazheruddin H. ; Guillo-Sansano, Efren ; Burt, Graeme M. ; Papagiannis, Grigoris K.</creator><creatorcontrib>Kontis, Eleftherios O. ; Papadopoulos, Theofilos A. ; Syed, Mazheruddin H. ; Guillo-Sansano, Efren ; Burt, Graeme M. ; Papagiannis, Grigoris K.</creatorcontrib><description>Aggregated equivalent models for the dynamic analysis of active distribution networks (ADNs) can be efficiently developed using dynamic responses recorded through field measurements. However, equivalent model parameters are highly affected from the time-varying composition of power system loads and the stochastic behavior of distributed generators. Thus, equivalent models, developed through in situ measurements, are valid only for the operating conditions from which they have been derived. To overcome this issue, in this paper, a new method is proposed for the derivation of generic aggregated dynamic equivalent models, i.e., for equivalent models that can be used for the dynamic analysis of a wide range of network conditions. The method incorporates clustering and artificial neural network techniques to derive robust sets of parameters for a variable-order dynamic equivalent model. The effectiveness of the proposed method is evaluated using measurements recorded on a laboratory-scale ADN, while its performance is compared with a conventional technique. The corresponding results reveal the applicability of the proposed approach for the analysis and simulation of a wide range of distinct network conditions.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2894185</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Artificial intelligence ; Artificial neural networks ; black-box modeling ; Clustering ; Computational modeling ; Computer simulation ; Derivation ; Distributed generation ; Dynamic equivalents ; dynamic modeling ; Equivalence ; Generators ; In situ measurement ; Load modeling ; Mathematical models ; measurement-based approach ; Order parameters ; Parameter robustness ; Power system dynamics ; Reactive power</subject><ispartof>IEEE transactions on power systems, 2019-07, Vol.34 (4), p.2947-2956</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-10d6db486cd0266b915a9963815217104e04bf324bd4fdc8ed7ffc6951a95e883</citedby><cites>FETCH-LOGICAL-c339t-10d6db486cd0266b915a9963815217104e04bf324bd4fdc8ed7ffc6951a95e883</cites><orcidid>0000-0003-3147-0817 ; 0000-0002-9470-8573 ; 0000-0002-2773-4157 ; 0000-0001-7595-9038 ; 0000-0002-0315-5919 ; 0000-0001-6384-1964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8620372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8620372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kontis, Eleftherios O.</creatorcontrib><creatorcontrib>Papadopoulos, Theofilos A.</creatorcontrib><creatorcontrib>Syed, Mazheruddin H.</creatorcontrib><creatorcontrib>Guillo-Sansano, Efren</creatorcontrib><creatorcontrib>Burt, Graeme M.</creatorcontrib><creatorcontrib>Papagiannis, Grigoris K.</creatorcontrib><title>Artificial-Intelligence Method for the Derivation of Generic Aggregated Dynamic Equivalent Models</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>Aggregated equivalent models for the dynamic analysis of active distribution networks (ADNs) can be efficiently developed using dynamic responses recorded through field measurements. However, equivalent model parameters are highly affected from the time-varying composition of power system loads and the stochastic behavior of distributed generators. Thus, equivalent models, developed through in situ measurements, are valid only for the operating conditions from which they have been derived. To overcome this issue, in this paper, a new method is proposed for the derivation of generic aggregated dynamic equivalent models, i.e., for equivalent models that can be used for the dynamic analysis of a wide range of network conditions. The method incorporates clustering and artificial neural network techniques to derive robust sets of parameters for a variable-order dynamic equivalent model. The effectiveness of the proposed method is evaluated using measurements recorded on a laboratory-scale ADN, while its performance is compared with a conventional technique. The corresponding results reveal the applicability of the proposed approach for the analysis and simulation of a wide range of distinct network conditions.</description><subject>Analytical models</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>black-box modeling</subject><subject>Clustering</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Derivation</subject><subject>Distributed generation</subject><subject>Dynamic equivalents</subject><subject>dynamic modeling</subject><subject>Equivalence</subject><subject>Generators</subject><subject>In situ measurement</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>measurement-based approach</subject><subject>Order parameters</subject><subject>Parameter robustness</subject><subject>Power system dynamics</subject><subject>Reactive power</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9A3rZxHNxv7t7JIBIAtEoxmOz7c5CSWlhu5jw7y1iPE1m5nlnkgehe0oGlBLztHz7ev8YMELNgGkjqJYXqEel1AlRqblEPaK1TLSR5BrdtO2GEKK6RQ_ZYYilL4vSVsmsjlBV5QrqAvAC4rpx2DcBxzXgMYTy28ayqXHj8RTqri_wcLUKsLIRHB4fa7vtRpP9oQMrqCNeNA6q9hZdeVu1cPdX--jzebIcvSTz1-lsNJwnBecmJpQ45XKhVeEIUyo3VFpjFNdUMppSIoCI3HMmcie8KzS41PtCGUmtkaA176PH891daPYHaGO2aQ6h7l5mjAnBJRWCdRQ7U0Vo2jaAz3ah3NpwzCjJTiqzX5XZSWX2p7ILPZxDJQD8B7RihKeM_wCiaXBP</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Kontis, Eleftherios O.</creator><creator>Papadopoulos, Theofilos A.</creator><creator>Syed, Mazheruddin H.</creator><creator>Guillo-Sansano, Efren</creator><creator>Burt, Graeme M.</creator><creator>Papagiannis, Grigoris K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3147-0817</orcidid><orcidid>https://orcid.org/0000-0002-9470-8573</orcidid><orcidid>https://orcid.org/0000-0002-2773-4157</orcidid><orcidid>https://orcid.org/0000-0001-7595-9038</orcidid><orcidid>https://orcid.org/0000-0002-0315-5919</orcidid><orcidid>https://orcid.org/0000-0001-6384-1964</orcidid></search><sort><creationdate>201907</creationdate><title>Artificial-Intelligence Method for the Derivation of Generic Aggregated Dynamic Equivalent Models</title><author>Kontis, Eleftherios O. ; Papadopoulos, Theofilos A. ; Syed, Mazheruddin H. ; Guillo-Sansano, Efren ; Burt, Graeme M. ; Papagiannis, Grigoris K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-10d6db486cd0266b915a9963815217104e04bf324bd4fdc8ed7ffc6951a95e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical models</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>black-box modeling</topic><topic>Clustering</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Derivation</topic><topic>Distributed generation</topic><topic>Dynamic equivalents</topic><topic>dynamic modeling</topic><topic>Equivalence</topic><topic>Generators</topic><topic>In situ measurement</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>measurement-based approach</topic><topic>Order parameters</topic><topic>Parameter robustness</topic><topic>Power system dynamics</topic><topic>Reactive power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kontis, Eleftherios O.</creatorcontrib><creatorcontrib>Papadopoulos, Theofilos A.</creatorcontrib><creatorcontrib>Syed, Mazheruddin H.</creatorcontrib><creatorcontrib>Guillo-Sansano, Efren</creatorcontrib><creatorcontrib>Burt, Graeme M.</creatorcontrib><creatorcontrib>Papagiannis, Grigoris K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kontis, Eleftherios O.</au><au>Papadopoulos, Theofilos A.</au><au>Syed, Mazheruddin H.</au><au>Guillo-Sansano, Efren</au><au>Burt, Graeme M.</au><au>Papagiannis, Grigoris K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial-Intelligence Method for the Derivation of Generic Aggregated Dynamic Equivalent Models</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2019-07</date><risdate>2019</risdate><volume>34</volume><issue>4</issue><spage>2947</spage><epage>2956</epage><pages>2947-2956</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>Aggregated equivalent models for the dynamic analysis of active distribution networks (ADNs) can be efficiently developed using dynamic responses recorded through field measurements. However, equivalent model parameters are highly affected from the time-varying composition of power system loads and the stochastic behavior of distributed generators. Thus, equivalent models, developed through in situ measurements, are valid only for the operating conditions from which they have been derived. To overcome this issue, in this paper, a new method is proposed for the derivation of generic aggregated dynamic equivalent models, i.e., for equivalent models that can be used for the dynamic analysis of a wide range of network conditions. The method incorporates clustering and artificial neural network techniques to derive robust sets of parameters for a variable-order dynamic equivalent model. The effectiveness of the proposed method is evaluated using measurements recorded on a laboratory-scale ADN, while its performance is compared with a conventional technique. The corresponding results reveal the applicability of the proposed approach for the analysis and simulation of a wide range of distinct network conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2894185</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3147-0817</orcidid><orcidid>https://orcid.org/0000-0002-9470-8573</orcidid><orcidid>https://orcid.org/0000-0002-2773-4157</orcidid><orcidid>https://orcid.org/0000-0001-7595-9038</orcidid><orcidid>https://orcid.org/0000-0002-0315-5919</orcidid><orcidid>https://orcid.org/0000-0001-6384-1964</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2019-07, Vol.34 (4), p.2947-2956
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2244351442
source IEEE Electronic Library (IEL)
subjects Analytical models
Artificial intelligence
Artificial neural networks
black-box modeling
Clustering
Computational modeling
Computer simulation
Derivation
Distributed generation
Dynamic equivalents
dynamic modeling
Equivalence
Generators
In situ measurement
Load modeling
Mathematical models
measurement-based approach
Order parameters
Parameter robustness
Power system dynamics
Reactive power
title Artificial-Intelligence Method for the Derivation of Generic Aggregated Dynamic Equivalent Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial-Intelligence%20Method%20for%20the%20Derivation%20of%20Generic%20Aggregated%20Dynamic%20Equivalent%20Models&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Kontis,%20Eleftherios%20O.&rft.date=2019-07&rft.volume=34&rft.issue=4&rft.spage=2947&rft.epage=2956&rft.pages=2947-2956&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2894185&rft_dat=%3Cproquest_RIE%3E2244351442%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244351442&rft_id=info:pmid/&rft_ieee_id=8620372&rfr_iscdi=true