Aggregated Energy Storage for Power System Frequency Control: A Finite-Time Consensus Approach
In future power systems, widespread small-scale energy storage systems (ESSs) can be aggregated to provide ancillary services. In this context, a new load frequency control scheme which incorporates the energy storage aggregator (ESA) and its associated disturbance observer is proposed. The disturba...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2019-07, Vol.10 (4), p.3675-3686 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3686 |
---|---|
container_issue | 4 |
container_start_page | 3675 |
container_title | IEEE transactions on smart grid |
container_volume | 10 |
creator | Wang, Yu Xu, Yan Tang, Yi Liao, Kai Syed, Mazheruddin H. Guillo-Sansano, Efren Burt, Graeme M. |
description | In future power systems, widespread small-scale energy storage systems (ESSs) can be aggregated to provide ancillary services. In this context, a new load frequency control scheme which incorporates the energy storage aggregator (ESA) and its associated disturbance observer is proposed. The disturbance observer is designed to supplement the secondary frequency control for the ESA, therefore the system frequency response and recovery can be improved. Within the ESA, a finite-time leader-follower consensus algorithm is proposed to control the small-scale ESSs via sparse communication networks. This algorithm ensures that the ESA tracks the frequency control signals, while the state-of-charge among each ESS is balanced in finite-time. The external characteristics of the ESA will resemble to that of one large-scale ESS. Numerical examples demonstrate the convergence of the ESA under different communication graphs. The effectiveness of the entire scheme for power system frequency control is validated under a variety of scenarios that include contingency and normal operation. |
doi_str_mv | 10.1109/TSG.2018.2833877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2244351296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8356124</ieee_id><sourcerecordid>2244351296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-f52cb71609050ce20b441dfc14a18d4af5ac4fc002ceabc91978cea9b76774363</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsNTeBS8LnlP3K5ust1DaKhQUWq8um-0kprTZupsi-e_d0NK5zDC8N2_4IfRIyZRSol426-WUEZpPWc55nmU3aESVUAknkt5e55Tfo0kIOxKLcy6ZGqHvoq491KaDLZ634OserzvnTQ24ch5_uj_weN2HDg544eH3BK3t8cy1nXf7V1zgRdM2HSSb5gDDOkAbTgEXx6N3xv48oLvK7ANMLn2MvhbzzewtWX0s32fFKrFCyC6pUmbLjEqiSEosMFIKQbeVpcLQfCtMlRorKksIs2BKq6jK8jipMpNZJrjkY_R8vhtj44-h0zt38m2M1IwJwVPK1KAiZ5X1LgQPlT765mB8rynRA0gdQeoBpL6AjJans6UBgKs856mkTPB_6Utuiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244351296</pqid></control><display><type>article</type><title>Aggregated Energy Storage for Power System Frequency Control: A Finite-Time Consensus Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yu ; Xu, Yan ; Tang, Yi ; Liao, Kai ; Syed, Mazheruddin H. ; Guillo-Sansano, Efren ; Burt, Graeme M.</creator><creatorcontrib>Wang, Yu ; Xu, Yan ; Tang, Yi ; Liao, Kai ; Syed, Mazheruddin H. ; Guillo-Sansano, Efren ; Burt, Graeme M.</creatorcontrib><description>In future power systems, widespread small-scale energy storage systems (ESSs) can be aggregated to provide ancillary services. In this context, a new load frequency control scheme which incorporates the energy storage aggregator (ESA) and its associated disturbance observer is proposed. The disturbance observer is designed to supplement the secondary frequency control for the ESA, therefore the system frequency response and recovery can be improved. Within the ESA, a finite-time leader-follower consensus algorithm is proposed to control the small-scale ESSs via sparse communication networks. This algorithm ensures that the ESA tracks the frequency control signals, while the state-of-charge among each ESS is balanced in finite-time. The external characteristics of the ESA will resemble to that of one large-scale ESS. Numerical examples demonstrate the convergence of the ESA under different communication graphs. The effectiveness of the entire scheme for power system frequency control is validated under a variety of scenarios that include contingency and normal operation.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2018.2833877</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>aggregator ; Algorithms ; Ancillary services ; Automatic generation control ; Communication networks ; Communications systems ; consensus algorithm ; Contingency ; Control systems ; demand response ; Disturbance observers ; Energy storage ; energy storage systems ; Frequency control ; Frequency response ; Power systems ; Storage systems</subject><ispartof>IEEE transactions on smart grid, 2019-07, Vol.10 (4), p.3675-3686</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-f52cb71609050ce20b441dfc14a18d4af5ac4fc002ceabc91978cea9b76774363</citedby><cites>FETCH-LOGICAL-c446t-f52cb71609050ce20b441dfc14a18d4af5ac4fc002ceabc91978cea9b76774363</cites><orcidid>0000-0002-9750-324X ; 0000-0003-3147-0817 ; 0000-0002-0503-183X ; 0000-0002-2773-4157 ; 0000-0001-8725-1336 ; 0000-0002-0315-5919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8356124$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8356124$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Liao, Kai</creatorcontrib><creatorcontrib>Syed, Mazheruddin H.</creatorcontrib><creatorcontrib>Guillo-Sansano, Efren</creatorcontrib><creatorcontrib>Burt, Graeme M.</creatorcontrib><title>Aggregated Energy Storage for Power System Frequency Control: A Finite-Time Consensus Approach</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>In future power systems, widespread small-scale energy storage systems (ESSs) can be aggregated to provide ancillary services. In this context, a new load frequency control scheme which incorporates the energy storage aggregator (ESA) and its associated disturbance observer is proposed. The disturbance observer is designed to supplement the secondary frequency control for the ESA, therefore the system frequency response and recovery can be improved. Within the ESA, a finite-time leader-follower consensus algorithm is proposed to control the small-scale ESSs via sparse communication networks. This algorithm ensures that the ESA tracks the frequency control signals, while the state-of-charge among each ESS is balanced in finite-time. The external characteristics of the ESA will resemble to that of one large-scale ESS. Numerical examples demonstrate the convergence of the ESA under different communication graphs. The effectiveness of the entire scheme for power system frequency control is validated under a variety of scenarios that include contingency and normal operation.</description><subject>aggregator</subject><subject>Algorithms</subject><subject>Ancillary services</subject><subject>Automatic generation control</subject><subject>Communication networks</subject><subject>Communications systems</subject><subject>consensus algorithm</subject><subject>Contingency</subject><subject>Control systems</subject><subject>demand response</subject><subject>Disturbance observers</subject><subject>Energy storage</subject><subject>energy storage systems</subject><subject>Frequency control</subject><subject>Frequency response</subject><subject>Power systems</subject><subject>Storage systems</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsNTeBS8LnlP3K5ust1DaKhQUWq8um-0kprTZupsi-e_d0NK5zDC8N2_4IfRIyZRSol426-WUEZpPWc55nmU3aESVUAknkt5e55Tfo0kIOxKLcy6ZGqHvoq491KaDLZ634OserzvnTQ24ch5_uj_weN2HDg544eH3BK3t8cy1nXf7V1zgRdM2HSSb5gDDOkAbTgEXx6N3xv48oLvK7ANMLn2MvhbzzewtWX0s32fFKrFCyC6pUmbLjEqiSEosMFIKQbeVpcLQfCtMlRorKksIs2BKq6jK8jipMpNZJrjkY_R8vhtj44-h0zt38m2M1IwJwVPK1KAiZ5X1LgQPlT765mB8rynRA0gdQeoBpL6AjJans6UBgKs856mkTPB_6Utuiw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Wang, Yu</creator><creator>Xu, Yan</creator><creator>Tang, Yi</creator><creator>Liao, Kai</creator><creator>Syed, Mazheruddin H.</creator><creator>Guillo-Sansano, Efren</creator><creator>Burt, Graeme M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9750-324X</orcidid><orcidid>https://orcid.org/0000-0003-3147-0817</orcidid><orcidid>https://orcid.org/0000-0002-0503-183X</orcidid><orcidid>https://orcid.org/0000-0002-2773-4157</orcidid><orcidid>https://orcid.org/0000-0001-8725-1336</orcidid><orcidid>https://orcid.org/0000-0002-0315-5919</orcidid></search><sort><creationdate>20190701</creationdate><title>Aggregated Energy Storage for Power System Frequency Control: A Finite-Time Consensus Approach</title><author>Wang, Yu ; Xu, Yan ; Tang, Yi ; Liao, Kai ; Syed, Mazheruddin H. ; Guillo-Sansano, Efren ; Burt, Graeme M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-f52cb71609050ce20b441dfc14a18d4af5ac4fc002ceabc91978cea9b76774363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>aggregator</topic><topic>Algorithms</topic><topic>Ancillary services</topic><topic>Automatic generation control</topic><topic>Communication networks</topic><topic>Communications systems</topic><topic>consensus algorithm</topic><topic>Contingency</topic><topic>Control systems</topic><topic>demand response</topic><topic>Disturbance observers</topic><topic>Energy storage</topic><topic>energy storage systems</topic><topic>Frequency control</topic><topic>Frequency response</topic><topic>Power systems</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Liao, Kai</creatorcontrib><creatorcontrib>Syed, Mazheruddin H.</creatorcontrib><creatorcontrib>Guillo-Sansano, Efren</creatorcontrib><creatorcontrib>Burt, Graeme M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yu</au><au>Xu, Yan</au><au>Tang, Yi</au><au>Liao, Kai</au><au>Syed, Mazheruddin H.</au><au>Guillo-Sansano, Efren</au><au>Burt, Graeme M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregated Energy Storage for Power System Frequency Control: A Finite-Time Consensus Approach</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>10</volume><issue>4</issue><spage>3675</spage><epage>3686</epage><pages>3675-3686</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>In future power systems, widespread small-scale energy storage systems (ESSs) can be aggregated to provide ancillary services. In this context, a new load frequency control scheme which incorporates the energy storage aggregator (ESA) and its associated disturbance observer is proposed. The disturbance observer is designed to supplement the secondary frequency control for the ESA, therefore the system frequency response and recovery can be improved. Within the ESA, a finite-time leader-follower consensus algorithm is proposed to control the small-scale ESSs via sparse communication networks. This algorithm ensures that the ESA tracks the frequency control signals, while the state-of-charge among each ESS is balanced in finite-time. The external characteristics of the ESA will resemble to that of one large-scale ESS. Numerical examples demonstrate the convergence of the ESA under different communication graphs. The effectiveness of the entire scheme for power system frequency control is validated under a variety of scenarios that include contingency and normal operation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSG.2018.2833877</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9750-324X</orcidid><orcidid>https://orcid.org/0000-0003-3147-0817</orcidid><orcidid>https://orcid.org/0000-0002-0503-183X</orcidid><orcidid>https://orcid.org/0000-0002-2773-4157</orcidid><orcidid>https://orcid.org/0000-0001-8725-1336</orcidid><orcidid>https://orcid.org/0000-0002-0315-5919</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3053 |
ispartof | IEEE transactions on smart grid, 2019-07, Vol.10 (4), p.3675-3686 |
issn | 1949-3053 1949-3061 |
language | eng |
recordid | cdi_proquest_journals_2244351296 |
source | IEEE Electronic Library (IEL) |
subjects | aggregator Algorithms Ancillary services Automatic generation control Communication networks Communications systems consensus algorithm Contingency Control systems demand response Disturbance observers Energy storage energy storage systems Frequency control Frequency response Power systems Storage systems |
title | Aggregated Energy Storage for Power System Frequency Control: A Finite-Time Consensus Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregated%20Energy%20Storage%20for%20Power%20System%20Frequency%20Control:%20A%20Finite-Time%20Consensus%20Approach&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Wang,%20Yu&rft.date=2019-07-01&rft.volume=10&rft.issue=4&rft.spage=3675&rft.epage=3686&rft.pages=3675-3686&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2018.2833877&rft_dat=%3Cproquest_RIE%3E2244351296%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244351296&rft_id=info:pmid/&rft_ieee_id=8356124&rfr_iscdi=true |