A Machine Learning-Based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements

An approach combining the Hotelling T^{2} control method with a weighted random forest classifier is proposed and used in the context of detecting land cover changes via remote sensing and radiometric measurements. Hotelling T^{2} procedure is introduced to identify features corresponding to cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2019-07, Vol.19 (14), p.5843-5850
Hauptverfasser: Zerrouki, Nabil, Harrou, Fouzi, Sun, Ying, Hocini, Lotfi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5850
container_issue 14
container_start_page 5843
container_title IEEE sensors journal
container_volume 19
creator Zerrouki, Nabil
Harrou, Fouzi
Sun, Ying
Hocini, Lotfi
description An approach combining the Hotelling T^{2} control method with a weighted random forest classifier is proposed and used in the context of detecting land cover changes via remote sensing and radiometric measurements. Hotelling T^{2} procedure is introduced to identify features corresponding to changed areas. Nevertheless, T^{2} scheme is not able to separate real from false changes. To tackle this limitation, the weighted random forest algorithm, which is an efficient classification technique for imbalanced problems, has been successfully applied to the features of the detected pixels to recognize the type of change. The feasibility of the proposed procedure is verified using SZTAKI AirChange benchmark data. Results proclaim that the proposed detection scheme succeeds to effectively identify land cover changes. Also, the comparisons with other methods (i.e., neural network, random forest, support vector machine, and k -nearest neighbors) highlight the superiority of the proposed method.
doi_str_mv 10.1109/JSEN.2019.2904137
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2244350482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8664182</ieee_id><sourcerecordid>2244350482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-f2fb70cab0b6a41dd1db229f19b2e1de4781584368bdddafca68f91813753183</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSsEEmPwARCXSJw74iRt0-Mo4586kLYhcavSxt2KaDqSDolvT8omTrbl37P1XhBcAp0A0PTmeTl7mTAK6YSlVABPjoIRRJEMIRHyeOg5DQVP3k-DM-c-qCeTKBkFbkrmqto0BkmOyprGrMNb5VCT6XZrO78idWdJrowmWfeNlmQbZdZI7rDHqm86Q96cF5EFtl2PZInmbxz4hdJN12Jvm4rMUbmdxRZN786Dk1p9Orw41HGwup-tsscwf314yqZ5WHEp-rBmdZnQSpW0jJUArUGXjKU1pCVD0CgSCZEUPJal1lrVlYplnYL05iMOko-D6_1Z7-Nrh64vPrqdNf5jwZgQPKJCMk_Bnqps55zFutjaplX2pwBaDNEWQ7TFEG1xiNZrrvaaBhH_eRnHAvzFX_i8dbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244350482</pqid></control><display><type>article</type><title>A Machine Learning-Based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Zerrouki, Nabil ; Harrou, Fouzi ; Sun, Ying ; Hocini, Lotfi</creator><creatorcontrib>Zerrouki, Nabil ; Harrou, Fouzi ; Sun, Ying ; Hocini, Lotfi</creatorcontrib><description><![CDATA[An approach combining the Hotelling <inline-formula> <tex-math notation="LaTeX">T^{2} </tex-math></inline-formula> control method with a weighted random forest classifier is proposed and used in the context of detecting land cover changes via remote sensing and radiometric measurements. Hotelling <inline-formula> <tex-math notation="LaTeX">T^{2} </tex-math></inline-formula> procedure is introduced to identify features corresponding to changed areas. Nevertheless, <inline-formula> <tex-math notation="LaTeX">T^{2} </tex-math></inline-formula> scheme is not able to separate real from false changes. To tackle this limitation, the weighted random forest algorithm, which is an efficient classification technique for imbalanced problems, has been successfully applied to the features of the detected pixels to recognize the type of change. The feasibility of the proposed procedure is verified using SZTAKI AirChange benchmark data. Results proclaim that the proposed detection scheme succeeds to effectively identify land cover changes. Also, the comparisons with other methods (i.e., neural network, random forest, support vector machine, and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbors) highlight the superiority of the proposed method.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2904137</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agriculture ; Algorithms ; Change detection ; Feature extraction ; Feature recognition ; Identification methods ; Land cover ; Land cover change detection ; Machine learning ; Monitoring ; multi-date measurements ; multi-spectral sensors ; multivariate statistical approach ; Neural networks ; Radiometry ; random forest classification ; Remote sensing ; Sensors ; Support vector machines</subject><ispartof>IEEE sensors journal, 2019-07, Vol.19 (14), p.5843-5850</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-f2fb70cab0b6a41dd1db229f19b2e1de4781584368bdddafca68f91813753183</citedby><cites>FETCH-LOGICAL-c384t-f2fb70cab0b6a41dd1db229f19b2e1de4781584368bdddafca68f91813753183</cites><orcidid>0000-0001-6703-4270 ; 0000-0002-2138-319X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8664182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8664182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zerrouki, Nabil</creatorcontrib><creatorcontrib>Harrou, Fouzi</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Hocini, Lotfi</creatorcontrib><title>A Machine Learning-Based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[An approach combining the Hotelling <inline-formula> <tex-math notation="LaTeX">T^{2} </tex-math></inline-formula> control method with a weighted random forest classifier is proposed and used in the context of detecting land cover changes via remote sensing and radiometric measurements. Hotelling <inline-formula> <tex-math notation="LaTeX">T^{2} </tex-math></inline-formula> procedure is introduced to identify features corresponding to changed areas. Nevertheless, <inline-formula> <tex-math notation="LaTeX">T^{2} </tex-math></inline-formula> scheme is not able to separate real from false changes. To tackle this limitation, the weighted random forest algorithm, which is an efficient classification technique for imbalanced problems, has been successfully applied to the features of the detected pixels to recognize the type of change. The feasibility of the proposed procedure is verified using SZTAKI AirChange benchmark data. Results proclaim that the proposed detection scheme succeeds to effectively identify land cover changes. Also, the comparisons with other methods (i.e., neural network, random forest, support vector machine, and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbors) highlight the superiority of the proposed method.]]></description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Change detection</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Identification methods</subject><subject>Land cover</subject><subject>Land cover change detection</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>multi-date measurements</subject><subject>multi-spectral sensors</subject><subject>multivariate statistical approach</subject><subject>Neural networks</subject><subject>Radiometry</subject><subject>random forest classification</subject><subject>Remote sensing</subject><subject>Sensors</subject><subject>Support vector machines</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwzAMxSsEEmPwARCXSJw74iRt0-Mo4586kLYhcavSxt2KaDqSDolvT8omTrbl37P1XhBcAp0A0PTmeTl7mTAK6YSlVABPjoIRRJEMIRHyeOg5DQVP3k-DM-c-qCeTKBkFbkrmqto0BkmOyprGrMNb5VCT6XZrO78idWdJrowmWfeNlmQbZdZI7rDHqm86Q96cF5EFtl2PZInmbxz4hdJN12Jvm4rMUbmdxRZN786Dk1p9Orw41HGwup-tsscwf314yqZ5WHEp-rBmdZnQSpW0jJUArUGXjKU1pCVD0CgSCZEUPJal1lrVlYplnYL05iMOko-D6_1Z7-Nrh64vPrqdNf5jwZgQPKJCMk_Bnqps55zFutjaplX2pwBaDNEWQ7TFEG1xiNZrrvaaBhH_eRnHAvzFX_i8dbU</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Zerrouki, Nabil</creator><creator>Harrou, Fouzi</creator><creator>Sun, Ying</creator><creator>Hocini, Lotfi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6703-4270</orcidid><orcidid>https://orcid.org/0000-0002-2138-319X</orcidid></search><sort><creationdate>20190715</creationdate><title>A Machine Learning-Based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements</title><author>Zerrouki, Nabil ; Harrou, Fouzi ; Sun, Ying ; Hocini, Lotfi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-f2fb70cab0b6a41dd1db229f19b2e1de4781584368bdddafca68f91813753183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Change detection</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Identification methods</topic><topic>Land cover</topic><topic>Land cover change detection</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>multi-date measurements</topic><topic>multi-spectral sensors</topic><topic>multivariate statistical approach</topic><topic>Neural networks</topic><topic>Radiometry</topic><topic>random forest classification</topic><topic>Remote sensing</topic><topic>Sensors</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zerrouki, Nabil</creatorcontrib><creatorcontrib>Harrou, Fouzi</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Hocini, Lotfi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zerrouki, Nabil</au><au>Harrou, Fouzi</au><au>Sun, Ying</au><au>Hocini, Lotfi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning-Based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>19</volume><issue>14</issue><spage>5843</spage><epage>5850</epage><pages>5843-5850</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[An approach combining the Hotelling <inline-formula> <tex-math notation="LaTeX">T^{2} </tex-math></inline-formula> control method with a weighted random forest classifier is proposed and used in the context of detecting land cover changes via remote sensing and radiometric measurements. Hotelling <inline-formula> <tex-math notation="LaTeX">T^{2} </tex-math></inline-formula> procedure is introduced to identify features corresponding to changed areas. Nevertheless, <inline-formula> <tex-math notation="LaTeX">T^{2} </tex-math></inline-formula> scheme is not able to separate real from false changes. To tackle this limitation, the weighted random forest algorithm, which is an efficient classification technique for imbalanced problems, has been successfully applied to the features of the detected pixels to recognize the type of change. The feasibility of the proposed procedure is verified using SZTAKI AirChange benchmark data. Results proclaim that the proposed detection scheme succeeds to effectively identify land cover changes. Also, the comparisons with other methods (i.e., neural network, random forest, support vector machine, and <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbors) highlight the superiority of the proposed method.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2904137</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6703-4270</orcidid><orcidid>https://orcid.org/0000-0002-2138-319X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-07, Vol.19 (14), p.5843-5850
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2244350482
source IEEE Electronic Library (IEL)
subjects Agriculture
Algorithms
Change detection
Feature extraction
Feature recognition
Identification methods
Land cover
Land cover change detection
Machine learning
Monitoring
multi-date measurements
multi-spectral sensors
multivariate statistical approach
Neural networks
Radiometry
random forest classification
Remote sensing
Sensors
Support vector machines
title A Machine Learning-Based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning-Based%20Approach%20for%20Land%20Cover%20Change%20Detection%20Using%20Remote%20Sensing%20and%20Radiometric%20Measurements&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zerrouki,%20Nabil&rft.date=2019-07-15&rft.volume=19&rft.issue=14&rft.spage=5843&rft.epage=5850&rft.pages=5843-5850&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2904137&rft_dat=%3Cproquest_RIE%3E2244350482%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244350482&rft_id=info:pmid/&rft_ieee_id=8664182&rfr_iscdi=true