Structures of Cu(In,Ga)(S,Se)2 solar cells for minimizing open‐circuit voltage deficit: Investigation of carrier recombination rates

Cu(In,Ga)(S,Se)2 (CIGSSe) solar cell structures are designed to reduce open‐circuit voltage deficit (VOC,def) for the enhancement of power conversion efficiency (η) through the optimizations of conduction band offsets not only between the buffer and absorber (ΔEC‐BA) but also between the transparent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in photovoltaics 2019-07, Vol.27 (7), p.630-639
Hauptverfasser: Chantana, Jakapan, Kato, Takuya, Sugimoto, Hiroki, Minemoto, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 7
container_start_page 630
container_title Progress in photovoltaics
container_volume 27
creator Chantana, Jakapan
Kato, Takuya
Sugimoto, Hiroki
Minemoto, Takashi
description Cu(In,Ga)(S,Se)2 (CIGSSe) solar cell structures are designed to reduce open‐circuit voltage deficit (VOC,def) for the enhancement of power conversion efficiency (η) through the optimizations of conduction band offsets not only between the buffer and absorber (ΔEC‐BA) but also between the transparent conductive oxide and absorber (ΔEC‐TA). Voltage‐independent carrier recombination rates at buffer/absorber interface (Ri0), in space‐charge region (Rd0), and in quasi‐neutral region (Rb0) of the CIGSSe solar cells with different structures are separately extracted. Consequently, the development of device structures with similar CIGSSe quality leads to the primary reduction of Ri0, while Rd0 and Rb0 are not varied very much, thus minimizing the VOC,def. It is disclosed that the solar cell structure of CIGSSe/Cd0.75Zn0.25S/Zn0.8Mg0.2O/Zn0.9Mg0.1O:Al together with K‐treated CIGSSe absorber is appropriate with the ΔEC‐BA of 0.31 eV and ΔEC‐TA of 0.37 eV, thereby significantly decreasing Ri0 and VOC,def to approximately 1.1 × 104 cm−2 s−1 and 0.374 V, respectively, and increasing the η to 21.1%. Structure development leads to decreases in voltage‐independent carrier recombination rate at buffer/absorber interface (Ri0) and open‐circuit voltage deficit (VOC,def) through optimizations of conduction band offsets between buffer and absorber and between transparent conductive oxide and absorber. K‐treated Cu(In,Ga)(S,Se)2 absorber yields further decreases in Ri0 and VOC,def, enhancing conversion efficiency to 21.1%.
doi_str_mv 10.1002/pip.3137
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243848475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243848475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2747-aec8b952ec43f34bdd2e73b2bc29339c600f88d1454d22ea2d876c444ec2e09c3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AURoMoWKvgIwy4aaGpk5nJz7iTojVQsFAFd2EyuSlTkkycSSp15cq1z-iTmBi3ru4H9_Ddy3GcSw_PPYzJda3qOfVoeOSMPMy56_n85bjPAXFDzv1T58zaHcZeGPFg5HxuGtPKpjVgkc7Rop3E1WwpppPNbANTgqwuhEESisKiXBtUqkqV6l1VW6RrqL4_vqQyslUN2uuiEVtAGeRKquYGxdUebKO2olG66sulMEaBQQakLlNVDQsjGrDnzkkuCgsXf3PsPN_fPS0e3NXjMl7crlxJQha6AmSUcp-AZDSnLM0yAiFNSSoJp5TLAOM8ijKP-SwjBATJojCQjDGQBDCXdOxcDb210a9t916y062pupMJIYxGLGKh31GTgZJGW2sgT2qjSmEOiYeT3nLSWU56yx3qDuibKuDwL5es4_Uv_wNwbICc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243848475</pqid></control><display><type>article</type><title>Structures of Cu(In,Ga)(S,Se)2 solar cells for minimizing open‐circuit voltage deficit: Investigation of carrier recombination rates</title><source>Wiley Online Library All Journals</source><creator>Chantana, Jakapan ; Kato, Takuya ; Sugimoto, Hiroki ; Minemoto, Takashi</creator><creatorcontrib>Chantana, Jakapan ; Kato, Takuya ; Sugimoto, Hiroki ; Minemoto, Takashi</creatorcontrib><description>Cu(In,Ga)(S,Se)2 (CIGSSe) solar cell structures are designed to reduce open‐circuit voltage deficit (VOC,def) for the enhancement of power conversion efficiency (η) through the optimizations of conduction band offsets not only between the buffer and absorber (ΔEC‐BA) but also between the transparent conductive oxide and absorber (ΔEC‐TA). Voltage‐independent carrier recombination rates at buffer/absorber interface (Ri0), in space‐charge region (Rd0), and in quasi‐neutral region (Rb0) of the CIGSSe solar cells with different structures are separately extracted. Consequently, the development of device structures with similar CIGSSe quality leads to the primary reduction of Ri0, while Rd0 and Rb0 are not varied very much, thus minimizing the VOC,def. It is disclosed that the solar cell structure of CIGSSe/Cd0.75Zn0.25S/Zn0.8Mg0.2O/Zn0.9Mg0.1O:Al together with K‐treated CIGSSe absorber is appropriate with the ΔEC‐BA of 0.31 eV and ΔEC‐TA of 0.37 eV, thereby significantly decreasing Ri0 and VOC,def to approximately 1.1 × 104 cm−2 s−1 and 0.374 V, respectively, and increasing the η to 21.1%. Structure development leads to decreases in voltage‐independent carrier recombination rate at buffer/absorber interface (Ri0) and open‐circuit voltage deficit (VOC,def) through optimizations of conduction band offsets between buffer and absorber and between transparent conductive oxide and absorber. K‐treated Cu(In,Ga)(S,Se)2 absorber yields further decreases in Ri0 and VOC,def, enhancing conversion efficiency to 21.1%.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.3137</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Buffers ; Carrier recombination ; carrier recombination rate ; Circuit design ; Conduction bands ; Cu(In,Ga)(S,Se)2 ; device structure ; Electric potential ; Energy conversion efficiency ; K treatment ; Offsets ; open‐circuit voltage deficit ; Photovoltaic cells ; solar cell ; Solar cells</subject><ispartof>Progress in photovoltaics, 2019-07, Vol.27 (7), p.630-639</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2747-aec8b952ec43f34bdd2e73b2bc29339c600f88d1454d22ea2d876c444ec2e09c3</citedby><cites>FETCH-LOGICAL-c2747-aec8b952ec43f34bdd2e73b2bc29339c600f88d1454d22ea2d876c444ec2e09c3</cites><orcidid>0000-0002-5711-4979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.3137$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.3137$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chantana, Jakapan</creatorcontrib><creatorcontrib>Kato, Takuya</creatorcontrib><creatorcontrib>Sugimoto, Hiroki</creatorcontrib><creatorcontrib>Minemoto, Takashi</creatorcontrib><title>Structures of Cu(In,Ga)(S,Se)2 solar cells for minimizing open‐circuit voltage deficit: Investigation of carrier recombination rates</title><title>Progress in photovoltaics</title><description>Cu(In,Ga)(S,Se)2 (CIGSSe) solar cell structures are designed to reduce open‐circuit voltage deficit (VOC,def) for the enhancement of power conversion efficiency (η) through the optimizations of conduction band offsets not only between the buffer and absorber (ΔEC‐BA) but also between the transparent conductive oxide and absorber (ΔEC‐TA). Voltage‐independent carrier recombination rates at buffer/absorber interface (Ri0), in space‐charge region (Rd0), and in quasi‐neutral region (Rb0) of the CIGSSe solar cells with different structures are separately extracted. Consequently, the development of device structures with similar CIGSSe quality leads to the primary reduction of Ri0, while Rd0 and Rb0 are not varied very much, thus minimizing the VOC,def. It is disclosed that the solar cell structure of CIGSSe/Cd0.75Zn0.25S/Zn0.8Mg0.2O/Zn0.9Mg0.1O:Al together with K‐treated CIGSSe absorber is appropriate with the ΔEC‐BA of 0.31 eV and ΔEC‐TA of 0.37 eV, thereby significantly decreasing Ri0 and VOC,def to approximately 1.1 × 104 cm−2 s−1 and 0.374 V, respectively, and increasing the η to 21.1%. Structure development leads to decreases in voltage‐independent carrier recombination rate at buffer/absorber interface (Ri0) and open‐circuit voltage deficit (VOC,def) through optimizations of conduction band offsets between buffer and absorber and between transparent conductive oxide and absorber. K‐treated Cu(In,Ga)(S,Se)2 absorber yields further decreases in Ri0 and VOC,def, enhancing conversion efficiency to 21.1%.</description><subject>Absorbers</subject><subject>Buffers</subject><subject>Carrier recombination</subject><subject>carrier recombination rate</subject><subject>Circuit design</subject><subject>Conduction bands</subject><subject>Cu(In,Ga)(S,Se)2</subject><subject>device structure</subject><subject>Electric potential</subject><subject>Energy conversion efficiency</subject><subject>K treatment</subject><subject>Offsets</subject><subject>open‐circuit voltage deficit</subject><subject>Photovoltaic cells</subject><subject>solar cell</subject><subject>Solar cells</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AURoMoWKvgIwy4aaGpk5nJz7iTojVQsFAFd2EyuSlTkkycSSp15cq1z-iTmBi3ru4H9_Ddy3GcSw_PPYzJda3qOfVoeOSMPMy56_n85bjPAXFDzv1T58zaHcZeGPFg5HxuGtPKpjVgkc7Rop3E1WwpppPNbANTgqwuhEESisKiXBtUqkqV6l1VW6RrqL4_vqQyslUN2uuiEVtAGeRKquYGxdUebKO2olG66sulMEaBQQakLlNVDQsjGrDnzkkuCgsXf3PsPN_fPS0e3NXjMl7crlxJQha6AmSUcp-AZDSnLM0yAiFNSSoJp5TLAOM8ijKP-SwjBATJojCQjDGQBDCXdOxcDb210a9t916y062pupMJIYxGLGKh31GTgZJGW2sgT2qjSmEOiYeT3nLSWU56yx3qDuibKuDwL5es4_Uv_wNwbICc</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Chantana, Jakapan</creator><creator>Kato, Takuya</creator><creator>Sugimoto, Hiroki</creator><creator>Minemoto, Takashi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5711-4979</orcidid></search><sort><creationdate>201907</creationdate><title>Structures of Cu(In,Ga)(S,Se)2 solar cells for minimizing open‐circuit voltage deficit: Investigation of carrier recombination rates</title><author>Chantana, Jakapan ; Kato, Takuya ; Sugimoto, Hiroki ; Minemoto, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2747-aec8b952ec43f34bdd2e73b2bc29339c600f88d1454d22ea2d876c444ec2e09c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbers</topic><topic>Buffers</topic><topic>Carrier recombination</topic><topic>carrier recombination rate</topic><topic>Circuit design</topic><topic>Conduction bands</topic><topic>Cu(In,Ga)(S,Se)2</topic><topic>device structure</topic><topic>Electric potential</topic><topic>Energy conversion efficiency</topic><topic>K treatment</topic><topic>Offsets</topic><topic>open‐circuit voltage deficit</topic><topic>Photovoltaic cells</topic><topic>solar cell</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chantana, Jakapan</creatorcontrib><creatorcontrib>Kato, Takuya</creatorcontrib><creatorcontrib>Sugimoto, Hiroki</creatorcontrib><creatorcontrib>Minemoto, Takashi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chantana, Jakapan</au><au>Kato, Takuya</au><au>Sugimoto, Hiroki</au><au>Minemoto, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structures of Cu(In,Ga)(S,Se)2 solar cells for minimizing open‐circuit voltage deficit: Investigation of carrier recombination rates</atitle><jtitle>Progress in photovoltaics</jtitle><date>2019-07</date><risdate>2019</risdate><volume>27</volume><issue>7</issue><spage>630</spage><epage>639</epage><pages>630-639</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><abstract>Cu(In,Ga)(S,Se)2 (CIGSSe) solar cell structures are designed to reduce open‐circuit voltage deficit (VOC,def) for the enhancement of power conversion efficiency (η) through the optimizations of conduction band offsets not only between the buffer and absorber (ΔEC‐BA) but also between the transparent conductive oxide and absorber (ΔEC‐TA). Voltage‐independent carrier recombination rates at buffer/absorber interface (Ri0), in space‐charge region (Rd0), and in quasi‐neutral region (Rb0) of the CIGSSe solar cells with different structures are separately extracted. Consequently, the development of device structures with similar CIGSSe quality leads to the primary reduction of Ri0, while Rd0 and Rb0 are not varied very much, thus minimizing the VOC,def. It is disclosed that the solar cell structure of CIGSSe/Cd0.75Zn0.25S/Zn0.8Mg0.2O/Zn0.9Mg0.1O:Al together with K‐treated CIGSSe absorber is appropriate with the ΔEC‐BA of 0.31 eV and ΔEC‐TA of 0.37 eV, thereby significantly decreasing Ri0 and VOC,def to approximately 1.1 × 104 cm−2 s−1 and 0.374 V, respectively, and increasing the η to 21.1%. Structure development leads to decreases in voltage‐independent carrier recombination rate at buffer/absorber interface (Ri0) and open‐circuit voltage deficit (VOC,def) through optimizations of conduction band offsets between buffer and absorber and between transparent conductive oxide and absorber. K‐treated Cu(In,Ga)(S,Se)2 absorber yields further decreases in Ri0 and VOC,def, enhancing conversion efficiency to 21.1%.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pip.3137</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5711-4979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2019-07, Vol.27 (7), p.630-639
issn 1062-7995
1099-159X
language eng
recordid cdi_proquest_journals_2243848475
source Wiley Online Library All Journals
subjects Absorbers
Buffers
Carrier recombination
carrier recombination rate
Circuit design
Conduction bands
Cu(In,Ga)(S,Se)2
device structure
Electric potential
Energy conversion efficiency
K treatment
Offsets
open‐circuit voltage deficit
Photovoltaic cells
solar cell
Solar cells
title Structures of Cu(In,Ga)(S,Se)2 solar cells for minimizing open‐circuit voltage deficit: Investigation of carrier recombination rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structures%20of%20Cu(In,Ga)(S,Se)2%20solar%20cells%20for%20minimizing%20open%E2%80%90circuit%20voltage%20deficit:%20Investigation%20of%20carrier%20recombination%20rates&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Chantana,%20Jakapan&rft.date=2019-07&rft.volume=27&rft.issue=7&rft.spage=630&rft.epage=639&rft.pages=630-639&rft.issn=1062-7995&rft.eissn=1099-159X&rft_id=info:doi/10.1002/pip.3137&rft_dat=%3Cproquest_cross%3E2243848475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243848475&rft_id=info:pmid/&rfr_iscdi=true