Thickness-dependent efficiency of directly grown graphene based solar cells

It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2019-07, Vol.148, p.187-195
Hauptverfasser: Rehman, Malik Abdul, Roy, Sanjib Baran, Akhtar, Imtisal, Bhopal, Muhammad Fahad, Choi, Woosuk, Nazir, Ghazanfar, Khan, Muhammad Farooq, Kumar, Sunil, Eom, Jonghwa, Chun, Seung-Hyun, Seo, Yongho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue
container_start_page 187
container_title Carbon (New York)
container_volume 148
creator Rehman, Malik Abdul
Roy, Sanjib Baran
Akhtar, Imtisal
Bhopal, Muhammad Fahad
Choi, Woosuk
Nazir, Ghazanfar
Khan, Muhammad Farooq
Kumar, Sunil
Eom, Jonghwa
Chun, Seung-Hyun
Seo, Yongho
description It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovoltaic devices. Here, we use plasma-enhanced CVD to grow graphene directly on planar n-type silicon to fabricate solar cells compatible for industrial-level applications. A key component to our accomplishment is the optimization of directly grown, continuous layers of graphene to achieve superior performance. Thus, by controlling the graphene thickness, the work function is significantly improved, the open circuit voltage is increased, and the energy conversion efficiency is enhanced. While the transfer of CVD grown graphene has limitations due to cracks and impurities during the complex process, our direct growth method demonstrates an efficiency of 5.51% on bare planar silicon with a large device area. Furthermore, the efficiency is remarkably increased to 9.18% by adding and doping a polymer layer. Interestingly, with the addition of a doped polymer layer, the cell exhibits excellent stability for at least one month. Our result suggests a promising simple path to fabricate high efficiency solar cells at low temperature and low cost. [Display omitted]
doi_str_mv 10.1016/j.carbon.2019.03.079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243458204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319303033</els_id><sourcerecordid>2243458204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-8ce02e6ec9e29f4ea126936e103f716dbe20b0453c1eacdc07947f75ac56d70c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-Aw8Fz62TR18XQRZfuOBlPYc0nbitNalJV9lvb9Z69jLDwP_B_Ai5pJBRoMV1n2nlG2czBrTOgGdQ1kdkQauSp7yq6TFZAECVFozxU3IWQh9PUVGxIM-bbaffLYaQtjiibdFOCRrT6Q6t3ifOJG3nUU_DPnnz7tvGqcYtWkwaFbBNghuUTzQOQzgnJ0YNAS_-9pK83t9tVo_p-uXhaXW7TjWvYEorjcCwQF0jq41ARVlR8wIpcFPSom2QQQMi55qi0q2Oz4jSlLnSedGWoPmSXM25o3efOwyT7N3O21gpGRNc5BUDEVViVmnvQvBo5Oi7D-X3koI8YJO9nLHJAzYJXMamaLuZbRg_-OrQy_CLAmcMsnXd_wE_C5B4eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243458204</pqid></control><display><type>article</type><title>Thickness-dependent efficiency of directly grown graphene based solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Rehman, Malik Abdul ; Roy, Sanjib Baran ; Akhtar, Imtisal ; Bhopal, Muhammad Fahad ; Choi, Woosuk ; Nazir, Ghazanfar ; Khan, Muhammad Farooq ; Kumar, Sunil ; Eom, Jonghwa ; Chun, Seung-Hyun ; Seo, Yongho</creator><creatorcontrib>Rehman, Malik Abdul ; Roy, Sanjib Baran ; Akhtar, Imtisal ; Bhopal, Muhammad Fahad ; Choi, Woosuk ; Nazir, Ghazanfar ; Khan, Muhammad Farooq ; Kumar, Sunil ; Eom, Jonghwa ; Chun, Seung-Hyun ; Seo, Yongho</creatorcontrib><description>It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovoltaic devices. Here, we use plasma-enhanced CVD to grow graphene directly on planar n-type silicon to fabricate solar cells compatible for industrial-level applications. A key component to our accomplishment is the optimization of directly grown, continuous layers of graphene to achieve superior performance. Thus, by controlling the graphene thickness, the work function is significantly improved, the open circuit voltage is increased, and the energy conversion efficiency is enhanced. While the transfer of CVD grown graphene has limitations due to cracks and impurities during the complex process, our direct growth method demonstrates an efficiency of 5.51% on bare planar silicon with a large device area. Furthermore, the efficiency is remarkably increased to 9.18% by adding and doping a polymer layer. Interestingly, with the addition of a doped polymer layer, the cell exhibits excellent stability for at least one month. Our result suggests a promising simple path to fabricate high efficiency solar cells at low temperature and low cost. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.03.079</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Addition polymerization ; Anti-reflecting coating ; Charge transport ; Chemical vapor deposition ; Crack propagation ; Cracks ; Directly grown graphene ; Energy conversion efficiency ; Graphene ; Graphene doping ; Graphene thickness dependence ; Open circuit voltage ; Optimization ; Photovoltaic cells ; Plasma enhanced chemical vapor deposition ; Polymers ; Schottky junction ; Silicon ; Solar cell ; Solar cells ; Thickness ; Work functions</subject><ispartof>Carbon (New York), 2019-07, Vol.148, p.187-195</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier BV Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-8ce02e6ec9e29f4ea126936e103f716dbe20b0453c1eacdc07947f75ac56d70c3</citedby><cites>FETCH-LOGICAL-c380t-8ce02e6ec9e29f4ea126936e103f716dbe20b0453c1eacdc07947f75ac56d70c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622319303033$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rehman, Malik Abdul</creatorcontrib><creatorcontrib>Roy, Sanjib Baran</creatorcontrib><creatorcontrib>Akhtar, Imtisal</creatorcontrib><creatorcontrib>Bhopal, Muhammad Fahad</creatorcontrib><creatorcontrib>Choi, Woosuk</creatorcontrib><creatorcontrib>Nazir, Ghazanfar</creatorcontrib><creatorcontrib>Khan, Muhammad Farooq</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Eom, Jonghwa</creatorcontrib><creatorcontrib>Chun, Seung-Hyun</creatorcontrib><creatorcontrib>Seo, Yongho</creatorcontrib><title>Thickness-dependent efficiency of directly grown graphene based solar cells</title><title>Carbon (New York)</title><description>It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovoltaic devices. Here, we use plasma-enhanced CVD to grow graphene directly on planar n-type silicon to fabricate solar cells compatible for industrial-level applications. A key component to our accomplishment is the optimization of directly grown, continuous layers of graphene to achieve superior performance. Thus, by controlling the graphene thickness, the work function is significantly improved, the open circuit voltage is increased, and the energy conversion efficiency is enhanced. While the transfer of CVD grown graphene has limitations due to cracks and impurities during the complex process, our direct growth method demonstrates an efficiency of 5.51% on bare planar silicon with a large device area. Furthermore, the efficiency is remarkably increased to 9.18% by adding and doping a polymer layer. Interestingly, with the addition of a doped polymer layer, the cell exhibits excellent stability for at least one month. Our result suggests a promising simple path to fabricate high efficiency solar cells at low temperature and low cost. [Display omitted]</description><subject>Addition polymerization</subject><subject>Anti-reflecting coating</subject><subject>Charge transport</subject><subject>Chemical vapor deposition</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Directly grown graphene</subject><subject>Energy conversion efficiency</subject><subject>Graphene</subject><subject>Graphene doping</subject><subject>Graphene thickness dependence</subject><subject>Open circuit voltage</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Polymers</subject><subject>Schottky junction</subject><subject>Silicon</subject><subject>Solar cell</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Work functions</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-Aw8Fz62TR18XQRZfuOBlPYc0nbitNalJV9lvb9Z69jLDwP_B_Ai5pJBRoMV1n2nlG2czBrTOgGdQ1kdkQauSp7yq6TFZAECVFozxU3IWQh9PUVGxIM-bbaffLYaQtjiibdFOCRrT6Q6t3ifOJG3nUU_DPnnz7tvGqcYtWkwaFbBNghuUTzQOQzgnJ0YNAS_-9pK83t9tVo_p-uXhaXW7TjWvYEorjcCwQF0jq41ARVlR8wIpcFPSom2QQQMi55qi0q2Oz4jSlLnSedGWoPmSXM25o3efOwyT7N3O21gpGRNc5BUDEVViVmnvQvBo5Oi7D-X3koI8YJO9nLHJAzYJXMamaLuZbRg_-OrQy_CLAmcMsnXd_wE_C5B4eQ</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Rehman, Malik Abdul</creator><creator>Roy, Sanjib Baran</creator><creator>Akhtar, Imtisal</creator><creator>Bhopal, Muhammad Fahad</creator><creator>Choi, Woosuk</creator><creator>Nazir, Ghazanfar</creator><creator>Khan, Muhammad Farooq</creator><creator>Kumar, Sunil</creator><creator>Eom, Jonghwa</creator><creator>Chun, Seung-Hyun</creator><creator>Seo, Yongho</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201907</creationdate><title>Thickness-dependent efficiency of directly grown graphene based solar cells</title><author>Rehman, Malik Abdul ; Roy, Sanjib Baran ; Akhtar, Imtisal ; Bhopal, Muhammad Fahad ; Choi, Woosuk ; Nazir, Ghazanfar ; Khan, Muhammad Farooq ; Kumar, Sunil ; Eom, Jonghwa ; Chun, Seung-Hyun ; Seo, Yongho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-8ce02e6ec9e29f4ea126936e103f716dbe20b0453c1eacdc07947f75ac56d70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Addition polymerization</topic><topic>Anti-reflecting coating</topic><topic>Charge transport</topic><topic>Chemical vapor deposition</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Directly grown graphene</topic><topic>Energy conversion efficiency</topic><topic>Graphene</topic><topic>Graphene doping</topic><topic>Graphene thickness dependence</topic><topic>Open circuit voltage</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Polymers</topic><topic>Schottky junction</topic><topic>Silicon</topic><topic>Solar cell</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Malik Abdul</creatorcontrib><creatorcontrib>Roy, Sanjib Baran</creatorcontrib><creatorcontrib>Akhtar, Imtisal</creatorcontrib><creatorcontrib>Bhopal, Muhammad Fahad</creatorcontrib><creatorcontrib>Choi, Woosuk</creatorcontrib><creatorcontrib>Nazir, Ghazanfar</creatorcontrib><creatorcontrib>Khan, Muhammad Farooq</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Eom, Jonghwa</creatorcontrib><creatorcontrib>Chun, Seung-Hyun</creatorcontrib><creatorcontrib>Seo, Yongho</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Malik Abdul</au><au>Roy, Sanjib Baran</au><au>Akhtar, Imtisal</au><au>Bhopal, Muhammad Fahad</au><au>Choi, Woosuk</au><au>Nazir, Ghazanfar</au><au>Khan, Muhammad Farooq</au><au>Kumar, Sunil</au><au>Eom, Jonghwa</au><au>Chun, Seung-Hyun</au><au>Seo, Yongho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness-dependent efficiency of directly grown graphene based solar cells</atitle><jtitle>Carbon (New York)</jtitle><date>2019-07</date><risdate>2019</risdate><volume>148</volume><spage>187</spage><epage>195</epage><pages>187-195</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovoltaic devices. Here, we use plasma-enhanced CVD to grow graphene directly on planar n-type silicon to fabricate solar cells compatible for industrial-level applications. A key component to our accomplishment is the optimization of directly grown, continuous layers of graphene to achieve superior performance. Thus, by controlling the graphene thickness, the work function is significantly improved, the open circuit voltage is increased, and the energy conversion efficiency is enhanced. While the transfer of CVD grown graphene has limitations due to cracks and impurities during the complex process, our direct growth method demonstrates an efficiency of 5.51% on bare planar silicon with a large device area. Furthermore, the efficiency is remarkably increased to 9.18% by adding and doping a polymer layer. Interestingly, with the addition of a doped polymer layer, the cell exhibits excellent stability for at least one month. Our result suggests a promising simple path to fabricate high efficiency solar cells at low temperature and low cost. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.03.079</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2019-07, Vol.148, p.187-195
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2243458204
source Elsevier ScienceDirect Journals
subjects Addition polymerization
Anti-reflecting coating
Charge transport
Chemical vapor deposition
Crack propagation
Cracks
Directly grown graphene
Energy conversion efficiency
Graphene
Graphene doping
Graphene thickness dependence
Open circuit voltage
Optimization
Photovoltaic cells
Plasma enhanced chemical vapor deposition
Polymers
Schottky junction
Silicon
Solar cell
Solar cells
Thickness
Work functions
title Thickness-dependent efficiency of directly grown graphene based solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness-dependent%20efficiency%20of%20directly%20grown%20graphene%20based%20solar%20cells&rft.jtitle=Carbon%20(New%20York)&rft.au=Rehman,%20Malik%20Abdul&rft.date=2019-07&rft.volume=148&rft.spage=187&rft.epage=195&rft.pages=187-195&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.03.079&rft_dat=%3Cproquest_cross%3E2243458204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243458204&rft_id=info:pmid/&rft_els_id=S0008622319303033&rfr_iscdi=true