Thickness-dependent efficiency of directly grown graphene based solar cells
It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovol...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2019-07, Vol.148, p.187-195 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | |
container_start_page | 187 |
container_title | Carbon (New York) |
container_volume | 148 |
creator | Rehman, Malik Abdul Roy, Sanjib Baran Akhtar, Imtisal Bhopal, Muhammad Fahad Choi, Woosuk Nazir, Ghazanfar Khan, Muhammad Farooq Kumar, Sunil Eom, Jonghwa Chun, Seung-Hyun Seo, Yongho |
description | It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovoltaic devices. Here, we use plasma-enhanced CVD to grow graphene directly on planar n-type silicon to fabricate solar cells compatible for industrial-level applications. A key component to our accomplishment is the optimization of directly grown, continuous layers of graphene to achieve superior performance. Thus, by controlling the graphene thickness, the work function is significantly improved, the open circuit voltage is increased, and the energy conversion efficiency is enhanced. While the transfer of CVD grown graphene has limitations due to cracks and impurities during the complex process, our direct growth method demonstrates an efficiency of 5.51% on bare planar silicon with a large device area. Furthermore, the efficiency is remarkably increased to 9.18% by adding and doping a polymer layer. Interestingly, with the addition of a doped polymer layer, the cell exhibits excellent stability for at least one month. Our result suggests a promising simple path to fabricate high efficiency solar cells at low temperature and low cost.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2019.03.079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243458204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319303033</els_id><sourcerecordid>2243458204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-8ce02e6ec9e29f4ea126936e103f716dbe20b0453c1eacdc07947f75ac56d70c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-Aw8Fz62TR18XQRZfuOBlPYc0nbitNalJV9lvb9Z69jLDwP_B_Ai5pJBRoMV1n2nlG2czBrTOgGdQ1kdkQauSp7yq6TFZAECVFozxU3IWQh9PUVGxIM-bbaffLYaQtjiibdFOCRrT6Q6t3ifOJG3nUU_DPnnz7tvGqcYtWkwaFbBNghuUTzQOQzgnJ0YNAS_-9pK83t9tVo_p-uXhaXW7TjWvYEorjcCwQF0jq41ARVlR8wIpcFPSom2QQQMi55qi0q2Oz4jSlLnSedGWoPmSXM25o3efOwyT7N3O21gpGRNc5BUDEVViVmnvQvBo5Oi7D-X3koI8YJO9nLHJAzYJXMamaLuZbRg_-OrQy_CLAmcMsnXd_wE_C5B4eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243458204</pqid></control><display><type>article</type><title>Thickness-dependent efficiency of directly grown graphene based solar cells</title><source>Elsevier ScienceDirect Journals</source><creator>Rehman, Malik Abdul ; Roy, Sanjib Baran ; Akhtar, Imtisal ; Bhopal, Muhammad Fahad ; Choi, Woosuk ; Nazir, Ghazanfar ; Khan, Muhammad Farooq ; Kumar, Sunil ; Eom, Jonghwa ; Chun, Seung-Hyun ; Seo, Yongho</creator><creatorcontrib>Rehman, Malik Abdul ; Roy, Sanjib Baran ; Akhtar, Imtisal ; Bhopal, Muhammad Fahad ; Choi, Woosuk ; Nazir, Ghazanfar ; Khan, Muhammad Farooq ; Kumar, Sunil ; Eom, Jonghwa ; Chun, Seung-Hyun ; Seo, Yongho</creatorcontrib><description>It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovoltaic devices. Here, we use plasma-enhanced CVD to grow graphene directly on planar n-type silicon to fabricate solar cells compatible for industrial-level applications. A key component to our accomplishment is the optimization of directly grown, continuous layers of graphene to achieve superior performance. Thus, by controlling the graphene thickness, the work function is significantly improved, the open circuit voltage is increased, and the energy conversion efficiency is enhanced. While the transfer of CVD grown graphene has limitations due to cracks and impurities during the complex process, our direct growth method demonstrates an efficiency of 5.51% on bare planar silicon with a large device area. Furthermore, the efficiency is remarkably increased to 9.18% by adding and doping a polymer layer. Interestingly, with the addition of a doped polymer layer, the cell exhibits excellent stability for at least one month. Our result suggests a promising simple path to fabricate high efficiency solar cells at low temperature and low cost.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.03.079</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Addition polymerization ; Anti-reflecting coating ; Charge transport ; Chemical vapor deposition ; Crack propagation ; Cracks ; Directly grown graphene ; Energy conversion efficiency ; Graphene ; Graphene doping ; Graphene thickness dependence ; Open circuit voltage ; Optimization ; Photovoltaic cells ; Plasma enhanced chemical vapor deposition ; Polymers ; Schottky junction ; Silicon ; Solar cell ; Solar cells ; Thickness ; Work functions</subject><ispartof>Carbon (New York), 2019-07, Vol.148, p.187-195</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier BV Jul 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-8ce02e6ec9e29f4ea126936e103f716dbe20b0453c1eacdc07947f75ac56d70c3</citedby><cites>FETCH-LOGICAL-c380t-8ce02e6ec9e29f4ea126936e103f716dbe20b0453c1eacdc07947f75ac56d70c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622319303033$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rehman, Malik Abdul</creatorcontrib><creatorcontrib>Roy, Sanjib Baran</creatorcontrib><creatorcontrib>Akhtar, Imtisal</creatorcontrib><creatorcontrib>Bhopal, Muhammad Fahad</creatorcontrib><creatorcontrib>Choi, Woosuk</creatorcontrib><creatorcontrib>Nazir, Ghazanfar</creatorcontrib><creatorcontrib>Khan, Muhammad Farooq</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Eom, Jonghwa</creatorcontrib><creatorcontrib>Chun, Seung-Hyun</creatorcontrib><creatorcontrib>Seo, Yongho</creatorcontrib><title>Thickness-dependent efficiency of directly grown graphene based solar cells</title><title>Carbon (New York)</title><description>It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovoltaic devices. Here, we use plasma-enhanced CVD to grow graphene directly on planar n-type silicon to fabricate solar cells compatible for industrial-level applications. A key component to our accomplishment is the optimization of directly grown, continuous layers of graphene to achieve superior performance. Thus, by controlling the graphene thickness, the work function is significantly improved, the open circuit voltage is increased, and the energy conversion efficiency is enhanced. While the transfer of CVD grown graphene has limitations due to cracks and impurities during the complex process, our direct growth method demonstrates an efficiency of 5.51% on bare planar silicon with a large device area. Furthermore, the efficiency is remarkably increased to 9.18% by adding and doping a polymer layer. Interestingly, with the addition of a doped polymer layer, the cell exhibits excellent stability for at least one month. Our result suggests a promising simple path to fabricate high efficiency solar cells at low temperature and low cost.
[Display omitted]</description><subject>Addition polymerization</subject><subject>Anti-reflecting coating</subject><subject>Charge transport</subject><subject>Chemical vapor deposition</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Directly grown graphene</subject><subject>Energy conversion efficiency</subject><subject>Graphene</subject><subject>Graphene doping</subject><subject>Graphene thickness dependence</subject><subject>Open circuit voltage</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Polymers</subject><subject>Schottky junction</subject><subject>Silicon</subject><subject>Solar cell</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Work functions</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-Aw8Fz62TR18XQRZfuOBlPYc0nbitNalJV9lvb9Z69jLDwP_B_Ai5pJBRoMV1n2nlG2czBrTOgGdQ1kdkQauSp7yq6TFZAECVFozxU3IWQh9PUVGxIM-bbaffLYaQtjiibdFOCRrT6Q6t3ifOJG3nUU_DPnnz7tvGqcYtWkwaFbBNghuUTzQOQzgnJ0YNAS_-9pK83t9tVo_p-uXhaXW7TjWvYEorjcCwQF0jq41ARVlR8wIpcFPSom2QQQMi55qi0q2Oz4jSlLnSedGWoPmSXM25o3efOwyT7N3O21gpGRNc5BUDEVViVmnvQvBo5Oi7D-X3koI8YJO9nLHJAzYJXMamaLuZbRg_-OrQy_CLAmcMsnXd_wE_C5B4eQ</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Rehman, Malik Abdul</creator><creator>Roy, Sanjib Baran</creator><creator>Akhtar, Imtisal</creator><creator>Bhopal, Muhammad Fahad</creator><creator>Choi, Woosuk</creator><creator>Nazir, Ghazanfar</creator><creator>Khan, Muhammad Farooq</creator><creator>Kumar, Sunil</creator><creator>Eom, Jonghwa</creator><creator>Chun, Seung-Hyun</creator><creator>Seo, Yongho</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201907</creationdate><title>Thickness-dependent efficiency of directly grown graphene based solar cells</title><author>Rehman, Malik Abdul ; Roy, Sanjib Baran ; Akhtar, Imtisal ; Bhopal, Muhammad Fahad ; Choi, Woosuk ; Nazir, Ghazanfar ; Khan, Muhammad Farooq ; Kumar, Sunil ; Eom, Jonghwa ; Chun, Seung-Hyun ; Seo, Yongho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-8ce02e6ec9e29f4ea126936e103f716dbe20b0453c1eacdc07947f75ac56d70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Addition polymerization</topic><topic>Anti-reflecting coating</topic><topic>Charge transport</topic><topic>Chemical vapor deposition</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Directly grown graphene</topic><topic>Energy conversion efficiency</topic><topic>Graphene</topic><topic>Graphene doping</topic><topic>Graphene thickness dependence</topic><topic>Open circuit voltage</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Polymers</topic><topic>Schottky junction</topic><topic>Silicon</topic><topic>Solar cell</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Malik Abdul</creatorcontrib><creatorcontrib>Roy, Sanjib Baran</creatorcontrib><creatorcontrib>Akhtar, Imtisal</creatorcontrib><creatorcontrib>Bhopal, Muhammad Fahad</creatorcontrib><creatorcontrib>Choi, Woosuk</creatorcontrib><creatorcontrib>Nazir, Ghazanfar</creatorcontrib><creatorcontrib>Khan, Muhammad Farooq</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Eom, Jonghwa</creatorcontrib><creatorcontrib>Chun, Seung-Hyun</creatorcontrib><creatorcontrib>Seo, Yongho</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Malik Abdul</au><au>Roy, Sanjib Baran</au><au>Akhtar, Imtisal</au><au>Bhopal, Muhammad Fahad</au><au>Choi, Woosuk</au><au>Nazir, Ghazanfar</au><au>Khan, Muhammad Farooq</au><au>Kumar, Sunil</au><au>Eom, Jonghwa</au><au>Chun, Seung-Hyun</au><au>Seo, Yongho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness-dependent efficiency of directly grown graphene based solar cells</atitle><jtitle>Carbon (New York)</jtitle><date>2019-07</date><risdate>2019</risdate><volume>148</volume><spage>187</spage><epage>195</epage><pages>187-195</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>It is of immense interest to improve the power conversion efficiency of graphene/silicon Schottky junction solar cells. The ultrathin graphene has essential properties, such as tunable work function to increase Schottky barrier height and built-in potential for efficient charge transport in photovoltaic devices. Here, we use plasma-enhanced CVD to grow graphene directly on planar n-type silicon to fabricate solar cells compatible for industrial-level applications. A key component to our accomplishment is the optimization of directly grown, continuous layers of graphene to achieve superior performance. Thus, by controlling the graphene thickness, the work function is significantly improved, the open circuit voltage is increased, and the energy conversion efficiency is enhanced. While the transfer of CVD grown graphene has limitations due to cracks and impurities during the complex process, our direct growth method demonstrates an efficiency of 5.51% on bare planar silicon with a large device area. Furthermore, the efficiency is remarkably increased to 9.18% by adding and doping a polymer layer. Interestingly, with the addition of a doped polymer layer, the cell exhibits excellent stability for at least one month. Our result suggests a promising simple path to fabricate high efficiency solar cells at low temperature and low cost.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.03.079</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2019-07, Vol.148, p.187-195 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2243458204 |
source | Elsevier ScienceDirect Journals |
subjects | Addition polymerization Anti-reflecting coating Charge transport Chemical vapor deposition Crack propagation Cracks Directly grown graphene Energy conversion efficiency Graphene Graphene doping Graphene thickness dependence Open circuit voltage Optimization Photovoltaic cells Plasma enhanced chemical vapor deposition Polymers Schottky junction Silicon Solar cell Solar cells Thickness Work functions |
title | Thickness-dependent efficiency of directly grown graphene based solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness-dependent%20efficiency%20of%20directly%20grown%20graphene%20based%20solar%20cells&rft.jtitle=Carbon%20(New%20York)&rft.au=Rehman,%20Malik%20Abdul&rft.date=2019-07&rft.volume=148&rft.spage=187&rft.epage=195&rft.pages=187-195&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.03.079&rft_dat=%3Cproquest_cross%3E2243458204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243458204&rft_id=info:pmid/&rft_els_id=S0008622319303033&rfr_iscdi=true |