Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting

Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2019-07, Vol.148, p.540-549
Hauptverfasser: Li, Xintong, Duan, Xiaoguang, Han, Chen, Fan, Xiaobin, Li, Yang, Zhang, Fengbao, Zhang, Guoliang, Peng, Wenchao, Wang, Shaobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue
container_start_page 540
container_title Carbon (New York)
container_volume 148
creator Li, Xintong
Duan, Xiaoguang
Han, Chen
Fan, Xiaobin
Li, Yang
Zhang, Fengbao
Zhang, Guoliang
Peng, Wenchao
Wang, Shaobin
description Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 to enlarge the specific surface areas to construct a porous structure (a-N,S-G) The chemical activation can simultaneously regulate the elemental composition and porous structure of SNG toward enhanced carbocatalysis. As a result, in the OER process, the overpotential of a-N,S-G is only 330 mV vs. RHE at 10 mA cm−2 in 1 M KOH, which surpasses the most reported carbon catalysts. In the HER process, −10 mA cm−2 can be achieved at an overpotential of 0.29 V vs. RHE in 1 M KOH and 0.31 V vs. RHE in 0.5 M H2SO4. By combination with commercial carbon black (CB), the Tafel slopes of a-N,S-G@CB is lower than the metal-based catalysts. A new turnover frequencies (TOF) calculation method is involved to analyze the reactivity of specific active sites of carbocatalyst including both heteroatoms and structural defects. Therefore, the study provides an effective strategy for simultaneous modifications of surface chemistry and porous structure of graphene as high-performance and robust carbocatalysts toward electrochemical water splitting. [Display omitted]
doi_str_mv 10.1016/j.carbon.2019.04.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243450334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319303446</els_id><sourcerecordid>2243450334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-625a1eace3386dac42c872ea6739973afb476381af673f6bd6a9ce46476948a53</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CLgesZkks5lI0jxBgU3ug6nmZM2ZZqMSVpx4bsbrW5dHc79_z9CLjkrOeP19abUEJbelRXjXclkySp-RCa8bUQh2o4fkwljrC3qqhKn5CzGTU5ly-WEfM7XuLUaBgo62T0k6x31hjqbgl-ho-B6GneD2QWqfdH7EXu6CjCu0SGFSHs0qFMRrF7THxUaEgwfMVHjA8UhN4PXf0_eIWGgcRxsStatzsmJgSHixW-cktf7u5f5Y7F4fnia3y4KLRlLWfcMOIJGIdq6By0r3TYVQt2IrmsEmKVsatFyMLli6mVfQ6dR1rnayRZmYkquDnfH4N92GJPa-F1w-aWqKinkjAkh85Q8TOngYwxo1BjsFsKH4kx9g1YbdQCtvkErJlUGndduDmuYHewtBhW1RaextyG7V723_x_4AiPpiuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243450334</pqid></control><display><type>article</type><title>Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Xintong ; Duan, Xiaoguang ; Han, Chen ; Fan, Xiaobin ; Li, Yang ; Zhang, Fengbao ; Zhang, Guoliang ; Peng, Wenchao ; Wang, Shaobin</creator><creatorcontrib>Li, Xintong ; Duan, Xiaoguang ; Han, Chen ; Fan, Xiaobin ; Li, Yang ; Zhang, Fengbao ; Zhang, Guoliang ; Peng, Wenchao ; Wang, Shaobin</creatorcontrib><description>Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 to enlarge the specific surface areas to construct a porous structure (a-N,S-G) The chemical activation can simultaneously regulate the elemental composition and porous structure of SNG toward enhanced carbocatalysis. As a result, in the OER process, the overpotential of a-N,S-G is only 330 mV vs. RHE at 10 mA cm−2 in 1 M KOH, which surpasses the most reported carbon catalysts. In the HER process, −10 mA cm−2 can be achieved at an overpotential of 0.29 V vs. RHE in 1 M KOH and 0.31 V vs. RHE in 0.5 M H2SO4. By combination with commercial carbon black (CB), the Tafel slopes of a-N,S-G@CB is lower than the metal-based catalysts. A new turnover frequencies (TOF) calculation method is involved to analyze the reactivity of specific active sites of carbocatalyst including both heteroatoms and structural defects. Therefore, the study provides an effective strategy for simultaneous modifications of surface chemistry and porous structure of graphene as high-performance and robust carbocatalysts toward electrochemical water splitting. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.04.021</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Activation ; Carbon ; Carbon black ; Carbonaceous materials ; Catalysis ; Catalysts ; Chemical synthesis ; Graphene ; Nitrogen ; Noble metals ; Organic chemistry ; Sulfur ; Sulfuric acid ; Tafel slopes ; Water splitting ; Zinc chloride</subject><ispartof>Carbon (New York), 2019-07, Vol.148, p.540-549</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-625a1eace3386dac42c872ea6739973afb476381af673f6bd6a9ce46476948a53</citedby><cites>FETCH-LOGICAL-c400t-625a1eace3386dac42c872ea6739973afb476381af673f6bd6a9ce46476948a53</cites><orcidid>0000-0002-1515-8287 ; 0000-0002-9615-3866 ; 0000-0001-9635-5807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2019.04.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Xintong</creatorcontrib><creatorcontrib>Duan, Xiaoguang</creatorcontrib><creatorcontrib>Han, Chen</creatorcontrib><creatorcontrib>Fan, Xiaobin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fengbao</creatorcontrib><creatorcontrib>Zhang, Guoliang</creatorcontrib><creatorcontrib>Peng, Wenchao</creatorcontrib><creatorcontrib>Wang, Shaobin</creatorcontrib><title>Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting</title><title>Carbon (New York)</title><description>Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 to enlarge the specific surface areas to construct a porous structure (a-N,S-G) The chemical activation can simultaneously regulate the elemental composition and porous structure of SNG toward enhanced carbocatalysis. As a result, in the OER process, the overpotential of a-N,S-G is only 330 mV vs. RHE at 10 mA cm−2 in 1 M KOH, which surpasses the most reported carbon catalysts. In the HER process, −10 mA cm−2 can be achieved at an overpotential of 0.29 V vs. RHE in 1 M KOH and 0.31 V vs. RHE in 0.5 M H2SO4. By combination with commercial carbon black (CB), the Tafel slopes of a-N,S-G@CB is lower than the metal-based catalysts. A new turnover frequencies (TOF) calculation method is involved to analyze the reactivity of specific active sites of carbocatalyst including both heteroatoms and structural defects. Therefore, the study provides an effective strategy for simultaneous modifications of surface chemistry and porous structure of graphene as high-performance and robust carbocatalysts toward electrochemical water splitting. [Display omitted]</description><subject>Activation</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Carbonaceous materials</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Graphene</subject><subject>Nitrogen</subject><subject>Noble metals</subject><subject>Organic chemistry</subject><subject>Sulfur</subject><subject>Sulfuric acid</subject><subject>Tafel slopes</subject><subject>Water splitting</subject><subject>Zinc chloride</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CLgesZkks5lI0jxBgU3ug6nmZM2ZZqMSVpx4bsbrW5dHc79_z9CLjkrOeP19abUEJbelRXjXclkySp-RCa8bUQh2o4fkwljrC3qqhKn5CzGTU5ly-WEfM7XuLUaBgo62T0k6x31hjqbgl-ho-B6GneD2QWqfdH7EXu6CjCu0SGFSHs0qFMRrF7THxUaEgwfMVHjA8UhN4PXf0_eIWGgcRxsStatzsmJgSHixW-cktf7u5f5Y7F4fnia3y4KLRlLWfcMOIJGIdq6By0r3TYVQt2IrmsEmKVsatFyMLli6mVfQ6dR1rnayRZmYkquDnfH4N92GJPa-F1w-aWqKinkjAkh85Q8TOngYwxo1BjsFsKH4kx9g1YbdQCtvkErJlUGndduDmuYHewtBhW1RaextyG7V723_x_4AiPpiuE</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Li, Xintong</creator><creator>Duan, Xiaoguang</creator><creator>Han, Chen</creator><creator>Fan, Xiaobin</creator><creator>Li, Yang</creator><creator>Zhang, Fengbao</creator><creator>Zhang, Guoliang</creator><creator>Peng, Wenchao</creator><creator>Wang, Shaobin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1515-8287</orcidid><orcidid>https://orcid.org/0000-0002-9615-3866</orcidid><orcidid>https://orcid.org/0000-0001-9635-5807</orcidid></search><sort><creationdate>201907</creationdate><title>Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting</title><author>Li, Xintong ; Duan, Xiaoguang ; Han, Chen ; Fan, Xiaobin ; Li, Yang ; Zhang, Fengbao ; Zhang, Guoliang ; Peng, Wenchao ; Wang, Shaobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-625a1eace3386dac42c872ea6739973afb476381af673f6bd6a9ce46476948a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Carbonaceous materials</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Graphene</topic><topic>Nitrogen</topic><topic>Noble metals</topic><topic>Organic chemistry</topic><topic>Sulfur</topic><topic>Sulfuric acid</topic><topic>Tafel slopes</topic><topic>Water splitting</topic><topic>Zinc chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xintong</creatorcontrib><creatorcontrib>Duan, Xiaoguang</creatorcontrib><creatorcontrib>Han, Chen</creatorcontrib><creatorcontrib>Fan, Xiaobin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fengbao</creatorcontrib><creatorcontrib>Zhang, Guoliang</creatorcontrib><creatorcontrib>Peng, Wenchao</creatorcontrib><creatorcontrib>Wang, Shaobin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xintong</au><au>Duan, Xiaoguang</au><au>Han, Chen</au><au>Fan, Xiaobin</au><au>Li, Yang</au><au>Zhang, Fengbao</au><au>Zhang, Guoliang</au><au>Peng, Wenchao</au><au>Wang, Shaobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting</atitle><jtitle>Carbon (New York)</jtitle><date>2019-07</date><risdate>2019</risdate><volume>148</volume><spage>540</spage><epage>549</epage><pages>540-549</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 to enlarge the specific surface areas to construct a porous structure (a-N,S-G) The chemical activation can simultaneously regulate the elemental composition and porous structure of SNG toward enhanced carbocatalysis. As a result, in the OER process, the overpotential of a-N,S-G is only 330 mV vs. RHE at 10 mA cm−2 in 1 M KOH, which surpasses the most reported carbon catalysts. In the HER process, −10 mA cm−2 can be achieved at an overpotential of 0.29 V vs. RHE in 1 M KOH and 0.31 V vs. RHE in 0.5 M H2SO4. By combination with commercial carbon black (CB), the Tafel slopes of a-N,S-G@CB is lower than the metal-based catalysts. A new turnover frequencies (TOF) calculation method is involved to analyze the reactivity of specific active sites of carbocatalyst including both heteroatoms and structural defects. Therefore, the study provides an effective strategy for simultaneous modifications of surface chemistry and porous structure of graphene as high-performance and robust carbocatalysts toward electrochemical water splitting. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.04.021</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1515-8287</orcidid><orcidid>https://orcid.org/0000-0002-9615-3866</orcidid><orcidid>https://orcid.org/0000-0001-9635-5807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2019-07, Vol.148, p.540-549
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2243450334
source ScienceDirect Journals (5 years ago - present)
subjects Activation
Carbon
Carbon black
Carbonaceous materials
Catalysis
Catalysts
Chemical synthesis
Graphene
Nitrogen
Noble metals
Organic chemistry
Sulfur
Sulfuric acid
Tafel slopes
Water splitting
Zinc chloride
title Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20activation%20of%20nitrogen%20and%20sulfur%20co-doped%20graphene%20as%20defect-rich%20carbocatalyst%20for%20electrochemical%20water%20splitting&rft.jtitle=Carbon%20(New%20York)&rft.au=Li,%20Xintong&rft.date=2019-07&rft.volume=148&rft.spage=540&rft.epage=549&rft.pages=540-549&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.04.021&rft_dat=%3Cproquest_cross%3E2243450334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243450334&rft_id=info:pmid/&rft_els_id=S0008622319303446&rfr_iscdi=true