Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting
Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 t...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2019-07, Vol.148, p.540-549 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 549 |
---|---|
container_issue | |
container_start_page | 540 |
container_title | Carbon (New York) |
container_volume | 148 |
creator | Li, Xintong Duan, Xiaoguang Han, Chen Fan, Xiaobin Li, Yang Zhang, Fengbao Zhang, Guoliang Peng, Wenchao Wang, Shaobin |
description | Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 to enlarge the specific surface areas to construct a porous structure (a-N,S-G) The chemical activation can simultaneously regulate the elemental composition and porous structure of SNG toward enhanced carbocatalysis. As a result, in the OER process, the overpotential of a-N,S-G is only 330 mV vs. RHE at 10 mA cm−2 in 1 M KOH, which surpasses the most reported carbon catalysts. In the HER process, −10 mA cm−2 can be achieved at an overpotential of 0.29 V vs. RHE in 1 M KOH and 0.31 V vs. RHE in 0.5 M H2SO4. By combination with commercial carbon black (CB), the Tafel slopes of a-N,S-G@CB is lower than the metal-based catalysts. A new turnover frequencies (TOF) calculation method is involved to analyze the reactivity of specific active sites of carbocatalyst including both heteroatoms and structural defects. Therefore, the study provides an effective strategy for simultaneous modifications of surface chemistry and porous structure of graphene as high-performance and robust carbocatalysts toward electrochemical water splitting.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2019.04.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243450334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622319303446</els_id><sourcerecordid>2243450334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-625a1eace3386dac42c872ea6739973afb476381af673f6bd6a9ce46476948a53</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CLgesZkks5lI0jxBgU3ug6nmZM2ZZqMSVpx4bsbrW5dHc79_z9CLjkrOeP19abUEJbelRXjXclkySp-RCa8bUQh2o4fkwljrC3qqhKn5CzGTU5ly-WEfM7XuLUaBgo62T0k6x31hjqbgl-ho-B6GneD2QWqfdH7EXu6CjCu0SGFSHs0qFMRrF7THxUaEgwfMVHjA8UhN4PXf0_eIWGgcRxsStatzsmJgSHixW-cktf7u5f5Y7F4fnia3y4KLRlLWfcMOIJGIdq6By0r3TYVQt2IrmsEmKVsatFyMLli6mVfQ6dR1rnayRZmYkquDnfH4N92GJPa-F1w-aWqKinkjAkh85Q8TOngYwxo1BjsFsKH4kx9g1YbdQCtvkErJlUGndduDmuYHewtBhW1RaextyG7V723_x_4AiPpiuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243450334</pqid></control><display><type>article</type><title>Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Xintong ; Duan, Xiaoguang ; Han, Chen ; Fan, Xiaobin ; Li, Yang ; Zhang, Fengbao ; Zhang, Guoliang ; Peng, Wenchao ; Wang, Shaobin</creator><creatorcontrib>Li, Xintong ; Duan, Xiaoguang ; Han, Chen ; Fan, Xiaobin ; Li, Yang ; Zhang, Fengbao ; Zhang, Guoliang ; Peng, Wenchao ; Wang, Shaobin</creatorcontrib><description>Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 to enlarge the specific surface areas to construct a porous structure (a-N,S-G) The chemical activation can simultaneously regulate the elemental composition and porous structure of SNG toward enhanced carbocatalysis. As a result, in the OER process, the overpotential of a-N,S-G is only 330 mV vs. RHE at 10 mA cm−2 in 1 M KOH, which surpasses the most reported carbon catalysts. In the HER process, −10 mA cm−2 can be achieved at an overpotential of 0.29 V vs. RHE in 1 M KOH and 0.31 V vs. RHE in 0.5 M H2SO4. By combination with commercial carbon black (CB), the Tafel slopes of a-N,S-G@CB is lower than the metal-based catalysts. A new turnover frequencies (TOF) calculation method is involved to analyze the reactivity of specific active sites of carbocatalyst including both heteroatoms and structural defects. Therefore, the study provides an effective strategy for simultaneous modifications of surface chemistry and porous structure of graphene as high-performance and robust carbocatalysts toward electrochemical water splitting.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2019.04.021</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Activation ; Carbon ; Carbon black ; Carbonaceous materials ; Catalysis ; Catalysts ; Chemical synthesis ; Graphene ; Nitrogen ; Noble metals ; Organic chemistry ; Sulfur ; Sulfuric acid ; Tafel slopes ; Water splitting ; Zinc chloride</subject><ispartof>Carbon (New York), 2019-07, Vol.148, p.540-549</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-625a1eace3386dac42c872ea6739973afb476381af673f6bd6a9ce46476948a53</citedby><cites>FETCH-LOGICAL-c400t-625a1eace3386dac42c872ea6739973afb476381af673f6bd6a9ce46476948a53</cites><orcidid>0000-0002-1515-8287 ; 0000-0002-9615-3866 ; 0000-0001-9635-5807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2019.04.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Xintong</creatorcontrib><creatorcontrib>Duan, Xiaoguang</creatorcontrib><creatorcontrib>Han, Chen</creatorcontrib><creatorcontrib>Fan, Xiaobin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fengbao</creatorcontrib><creatorcontrib>Zhang, Guoliang</creatorcontrib><creatorcontrib>Peng, Wenchao</creatorcontrib><creatorcontrib>Wang, Shaobin</creatorcontrib><title>Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting</title><title>Carbon (New York)</title><description>Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 to enlarge the specific surface areas to construct a porous structure (a-N,S-G) The chemical activation can simultaneously regulate the elemental composition and porous structure of SNG toward enhanced carbocatalysis. As a result, in the OER process, the overpotential of a-N,S-G is only 330 mV vs. RHE at 10 mA cm−2 in 1 M KOH, which surpasses the most reported carbon catalysts. In the HER process, −10 mA cm−2 can be achieved at an overpotential of 0.29 V vs. RHE in 1 M KOH and 0.31 V vs. RHE in 0.5 M H2SO4. By combination with commercial carbon black (CB), the Tafel slopes of a-N,S-G@CB is lower than the metal-based catalysts. A new turnover frequencies (TOF) calculation method is involved to analyze the reactivity of specific active sites of carbocatalyst including both heteroatoms and structural defects. Therefore, the study provides an effective strategy for simultaneous modifications of surface chemistry and porous structure of graphene as high-performance and robust carbocatalysts toward electrochemical water splitting.
[Display omitted]</description><subject>Activation</subject><subject>Carbon</subject><subject>Carbon black</subject><subject>Carbonaceous materials</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Graphene</subject><subject>Nitrogen</subject><subject>Noble metals</subject><subject>Organic chemistry</subject><subject>Sulfur</subject><subject>Sulfuric acid</subject><subject>Tafel slopes</subject><subject>Water splitting</subject><subject>Zinc chloride</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CLgesZkks5lI0jxBgU3ug6nmZM2ZZqMSVpx4bsbrW5dHc79_z9CLjkrOeP19abUEJbelRXjXclkySp-RCa8bUQh2o4fkwljrC3qqhKn5CzGTU5ly-WEfM7XuLUaBgo62T0k6x31hjqbgl-ho-B6GneD2QWqfdH7EXu6CjCu0SGFSHs0qFMRrF7THxUaEgwfMVHjA8UhN4PXf0_eIWGgcRxsStatzsmJgSHixW-cktf7u5f5Y7F4fnia3y4KLRlLWfcMOIJGIdq6By0r3TYVQt2IrmsEmKVsatFyMLli6mVfQ6dR1rnayRZmYkquDnfH4N92GJPa-F1w-aWqKinkjAkh85Q8TOngYwxo1BjsFsKH4kx9g1YbdQCtvkErJlUGndduDmuYHewtBhW1RaextyG7V723_x_4AiPpiuE</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Li, Xintong</creator><creator>Duan, Xiaoguang</creator><creator>Han, Chen</creator><creator>Fan, Xiaobin</creator><creator>Li, Yang</creator><creator>Zhang, Fengbao</creator><creator>Zhang, Guoliang</creator><creator>Peng, Wenchao</creator><creator>Wang, Shaobin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1515-8287</orcidid><orcidid>https://orcid.org/0000-0002-9615-3866</orcidid><orcidid>https://orcid.org/0000-0001-9635-5807</orcidid></search><sort><creationdate>201907</creationdate><title>Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting</title><author>Li, Xintong ; Duan, Xiaoguang ; Han, Chen ; Fan, Xiaobin ; Li, Yang ; Zhang, Fengbao ; Zhang, Guoliang ; Peng, Wenchao ; Wang, Shaobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-625a1eace3386dac42c872ea6739973afb476381af673f6bd6a9ce46476948a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Carbon</topic><topic>Carbon black</topic><topic>Carbonaceous materials</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Graphene</topic><topic>Nitrogen</topic><topic>Noble metals</topic><topic>Organic chemistry</topic><topic>Sulfur</topic><topic>Sulfuric acid</topic><topic>Tafel slopes</topic><topic>Water splitting</topic><topic>Zinc chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xintong</creatorcontrib><creatorcontrib>Duan, Xiaoguang</creatorcontrib><creatorcontrib>Han, Chen</creatorcontrib><creatorcontrib>Fan, Xiaobin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhang, Fengbao</creatorcontrib><creatorcontrib>Zhang, Guoliang</creatorcontrib><creatorcontrib>Peng, Wenchao</creatorcontrib><creatorcontrib>Wang, Shaobin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xintong</au><au>Duan, Xiaoguang</au><au>Han, Chen</au><au>Fan, Xiaobin</au><au>Li, Yang</au><au>Zhang, Fengbao</au><au>Zhang, Guoliang</au><au>Peng, Wenchao</au><au>Wang, Shaobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting</atitle><jtitle>Carbon (New York)</jtitle><date>2019-07</date><risdate>2019</risdate><volume>148</volume><spage>540</spage><epage>549</epage><pages>540-549</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Heteroatom-doped carbonaceous materials are the most promising substitutes of noble metals as green catalysts for electrochemical water splitting. In this study, nitrogen and sulfur co-doped graphene (N,S-G) is synthesized via a one-pot calcination method. Subsequently, N,S-G is activated by ZnCl2 to enlarge the specific surface areas to construct a porous structure (a-N,S-G) The chemical activation can simultaneously regulate the elemental composition and porous structure of SNG toward enhanced carbocatalysis. As a result, in the OER process, the overpotential of a-N,S-G is only 330 mV vs. RHE at 10 mA cm−2 in 1 M KOH, which surpasses the most reported carbon catalysts. In the HER process, −10 mA cm−2 can be achieved at an overpotential of 0.29 V vs. RHE in 1 M KOH and 0.31 V vs. RHE in 0.5 M H2SO4. By combination with commercial carbon black (CB), the Tafel slopes of a-N,S-G@CB is lower than the metal-based catalysts. A new turnover frequencies (TOF) calculation method is involved to analyze the reactivity of specific active sites of carbocatalyst including both heteroatoms and structural defects. Therefore, the study provides an effective strategy for simultaneous modifications of surface chemistry and porous structure of graphene as high-performance and robust carbocatalysts toward electrochemical water splitting.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2019.04.021</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1515-8287</orcidid><orcidid>https://orcid.org/0000-0002-9615-3866</orcidid><orcidid>https://orcid.org/0000-0001-9635-5807</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2019-07, Vol.148, p.540-549 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2243450334 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Activation Carbon Carbon black Carbonaceous materials Catalysis Catalysts Chemical synthesis Graphene Nitrogen Noble metals Organic chemistry Sulfur Sulfuric acid Tafel slopes Water splitting Zinc chloride |
title | Chemical activation of nitrogen and sulfur co-doped graphene as defect-rich carbocatalyst for electrochemical water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20activation%20of%20nitrogen%20and%20sulfur%20co-doped%20graphene%20as%20defect-rich%20carbocatalyst%20for%20electrochemical%20water%20splitting&rft.jtitle=Carbon%20(New%20York)&rft.au=Li,%20Xintong&rft.date=2019-07&rft.volume=148&rft.spage=540&rft.epage=549&rft.pages=540-549&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2019.04.021&rft_dat=%3Cproquest_cross%3E2243450334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243450334&rft_id=info:pmid/&rft_els_id=S0008622319303446&rfr_iscdi=true |