Automatic classification of defective photovoltaic module cells in electroluminescence images

•We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2019-06, Vol.185, p.455-468
Hauptverfasser: Deitsch, Sergiu, Christlein, Vincent, Berger, Stephan, Buerhop-Lutz, Claudia, Maier, Andreas, Gallwitz, Florian, Riess, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue
container_start_page 455
container_title Solar energy
container_volume 185
creator Deitsch, Sergiu
Christlein, Vincent
Berger, Stephan
Buerhop-Lutz, Claudia
Maier, Andreas
Gallwitz, Florian
Riess, Christian
description •We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defects that affect the cell output. Electroluminescence (EL) imaging is a useful modality for the inspection of photovoltaic (PV) modules. EL images provide high spatial resolution, which makes it possible to detect even finest defects on the surface of PV modules. However, the analysis of EL images is typically a manual process that is expensive, time-consuming, and requires expert knowledge of many different types of defects. In this work, we investigate two approaches for automatic detection of such defects in a single image of a PV cell. The approaches differ in their hardware requirements, which are dictated by their respective application scenarios. The more hardware-efficient approach is based on hand-crafted features that are classified in a Support Vector Machine (SVM). To obtain a strong performance, we investigate and compare various processing variants. The more hardware-demanding approach uses an end-to-end deep Convolutional Neural Network (CNN) that runs on a Graphics Processing Unit (GPU). Both approaches are trained on 1968 cells extracted from high resolution EL intensity images of mono- and polycrystalline PV modules. The CNN is more accurate, and reaches an average accuracy of 88.42%. The SVM achieves a slightly lower average accuracy of 82.44%, but can run on arbitrary hardware. Both automated approaches make continuous, highly accurate monitoring of PV cells feasible.
doi_str_mv 10.1016/j.solener.2019.02.067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243449388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X19302014</els_id><sourcerecordid>2243449388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-9051cef274f8923c30e2e4e4d0bfec5b48c19b85179930d9eb54ed1e366a3c5b3</originalsourceid><addsrcrecordid>eNqFUMtKBDEQDKLguvoJQsDzjJ3HPHKSZfEFC14UvEiYyfRohuxkTWYW_HuzrHdPTdNV1VVFyDWDnAErb4c8eocjhpwDUznwHMrqhCyYrFjGeFGdkgWAqDNQ_P2cXMQ4ALCK1dWCfKzmyW-byRpqXBOj7a1Jmx-p72mHPZrJ7pHuvvzk995NTQJufTc7pAadi9SOFF1CBe_mrR0xGhwNUrttPjFekrO-cRGv_uaSvD3cv66fss3L4_N6tcmMBDFlCgpmsOeV7GvFhRGAHCXKDtpkoGhlbZhq64JVSgnoFLaFxI6hKMtGpLtYkpuj7i747xnjpAc_hzG91JxLIaUSdZ1QxRFlgo8xYK93IfkMP5qBPjSpB_3XpD40qYHr1GTi3R15mCLsbbpGYw8pOxtSct15-4_CLx05gZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243449388</pqid></control><display><type>article</type><title>Automatic classification of defective photovoltaic module cells in electroluminescence images</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Deitsch, Sergiu ; Christlein, Vincent ; Berger, Stephan ; Buerhop-Lutz, Claudia ; Maier, Andreas ; Gallwitz, Florian ; Riess, Christian</creator><creatorcontrib>Deitsch, Sergiu ; Christlein, Vincent ; Berger, Stephan ; Buerhop-Lutz, Claudia ; Maier, Andreas ; Gallwitz, Florian ; Riess, Christian</creatorcontrib><description>•We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defects that affect the cell output. Electroluminescence (EL) imaging is a useful modality for the inspection of photovoltaic (PV) modules. EL images provide high spatial resolution, which makes it possible to detect even finest defects on the surface of PV modules. However, the analysis of EL images is typically a manual process that is expensive, time-consuming, and requires expert knowledge of many different types of defects. In this work, we investigate two approaches for automatic detection of such defects in a single image of a PV cell. The approaches differ in their hardware requirements, which are dictated by their respective application scenarios. The more hardware-efficient approach is based on hand-crafted features that are classified in a Support Vector Machine (SVM). To obtain a strong performance, we investigate and compare various processing variants. The more hardware-demanding approach uses an end-to-end deep Convolutional Neural Network (CNN) that runs on a Graphics Processing Unit (GPU). Both approaches are trained on 1968 cells extracted from high resolution EL intensity images of mono- and polycrystalline PV modules. The CNN is more accurate, and reaches an average accuracy of 88.42%. The SVM achieves a slightly lower average accuracy of 82.44%, but can run on arbitrary hardware. Both automated approaches make continuous, highly accurate monitoring of PV cells feasible.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2019.02.067</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Artificial neural networks ; Automation ; Deep learning ; Defect classification ; Defects ; Electroluminescence ; Electroluminescence imaging ; Graphics processing units ; Hardware ; Image classification ; Image detection ; Image resolution ; Inspection ; Modules ; Neural networks ; Photovoltaic cells ; Photovoltaic modules ; Photovoltaics ; Regression analysis ; Solar cells ; Solar energy ; Spatial discrimination ; Spatial resolution ; Support vector machines ; Visual inspection</subject><ispartof>Solar energy, 2019-06, Vol.185, p.455-468</ispartof><rights>2019 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-9051cef274f8923c30e2e4e4d0bfec5b48c19b85179930d9eb54ed1e366a3c5b3</citedby><cites>FETCH-LOGICAL-c403t-9051cef274f8923c30e2e4e4d0bfec5b48c19b85179930d9eb54ed1e366a3c5b3</cites><orcidid>0000-0001-8865-8066 ; 0000-0003-0455-3799 ; 0000-0002-5556-5338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2019.02.067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Deitsch, Sergiu</creatorcontrib><creatorcontrib>Christlein, Vincent</creatorcontrib><creatorcontrib>Berger, Stephan</creatorcontrib><creatorcontrib>Buerhop-Lutz, Claudia</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Gallwitz, Florian</creatorcontrib><creatorcontrib>Riess, Christian</creatorcontrib><title>Automatic classification of defective photovoltaic module cells in electroluminescence images</title><title>Solar energy</title><description>•We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defects that affect the cell output. Electroluminescence (EL) imaging is a useful modality for the inspection of photovoltaic (PV) modules. EL images provide high spatial resolution, which makes it possible to detect even finest defects on the surface of PV modules. However, the analysis of EL images is typically a manual process that is expensive, time-consuming, and requires expert knowledge of many different types of defects. In this work, we investigate two approaches for automatic detection of such defects in a single image of a PV cell. The approaches differ in their hardware requirements, which are dictated by their respective application scenarios. The more hardware-efficient approach is based on hand-crafted features that are classified in a Support Vector Machine (SVM). To obtain a strong performance, we investigate and compare various processing variants. The more hardware-demanding approach uses an end-to-end deep Convolutional Neural Network (CNN) that runs on a Graphics Processing Unit (GPU). Both approaches are trained on 1968 cells extracted from high resolution EL intensity images of mono- and polycrystalline PV modules. The CNN is more accurate, and reaches an average accuracy of 88.42%. The SVM achieves a slightly lower average accuracy of 82.44%, but can run on arbitrary hardware. Both automated approaches make continuous, highly accurate monitoring of PV cells feasible.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Deep learning</subject><subject>Defect classification</subject><subject>Defects</subject><subject>Electroluminescence</subject><subject>Electroluminescence imaging</subject><subject>Graphics processing units</subject><subject>Hardware</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Image resolution</subject><subject>Inspection</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic modules</subject><subject>Photovoltaics</subject><subject>Regression analysis</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Support vector machines</subject><subject>Visual inspection</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKBDEQDKLguvoJQsDzjJ3HPHKSZfEFC14UvEiYyfRohuxkTWYW_HuzrHdPTdNV1VVFyDWDnAErb4c8eocjhpwDUznwHMrqhCyYrFjGeFGdkgWAqDNQ_P2cXMQ4ALCK1dWCfKzmyW-byRpqXBOj7a1Jmx-p72mHPZrJ7pHuvvzk995NTQJufTc7pAadi9SOFF1CBe_mrR0xGhwNUrttPjFekrO-cRGv_uaSvD3cv66fss3L4_N6tcmMBDFlCgpmsOeV7GvFhRGAHCXKDtpkoGhlbZhq64JVSgnoFLaFxI6hKMtGpLtYkpuj7i747xnjpAc_hzG91JxLIaUSdZ1QxRFlgo8xYK93IfkMP5qBPjSpB_3XpD40qYHr1GTi3R15mCLsbbpGYw8pOxtSct15-4_CLx05gZU</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Deitsch, Sergiu</creator><creator>Christlein, Vincent</creator><creator>Berger, Stephan</creator><creator>Buerhop-Lutz, Claudia</creator><creator>Maier, Andreas</creator><creator>Gallwitz, Florian</creator><creator>Riess, Christian</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8865-8066</orcidid><orcidid>https://orcid.org/0000-0003-0455-3799</orcidid><orcidid>https://orcid.org/0000-0002-5556-5338</orcidid></search><sort><creationdate>201906</creationdate><title>Automatic classification of defective photovoltaic module cells in electroluminescence images</title><author>Deitsch, Sergiu ; Christlein, Vincent ; Berger, Stephan ; Buerhop-Lutz, Claudia ; Maier, Andreas ; Gallwitz, Florian ; Riess, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-9051cef274f8923c30e2e4e4d0bfec5b48c19b85179930d9eb54ed1e366a3c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Deep learning</topic><topic>Defect classification</topic><topic>Defects</topic><topic>Electroluminescence</topic><topic>Electroluminescence imaging</topic><topic>Graphics processing units</topic><topic>Hardware</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Image resolution</topic><topic>Inspection</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic modules</topic><topic>Photovoltaics</topic><topic>Regression analysis</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Support vector machines</topic><topic>Visual inspection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deitsch, Sergiu</creatorcontrib><creatorcontrib>Christlein, Vincent</creatorcontrib><creatorcontrib>Berger, Stephan</creatorcontrib><creatorcontrib>Buerhop-Lutz, Claudia</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Gallwitz, Florian</creatorcontrib><creatorcontrib>Riess, Christian</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deitsch, Sergiu</au><au>Christlein, Vincent</au><au>Berger, Stephan</au><au>Buerhop-Lutz, Claudia</au><au>Maier, Andreas</au><au>Gallwitz, Florian</au><au>Riess, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic classification of defective photovoltaic module cells in electroluminescence images</atitle><jtitle>Solar energy</jtitle><date>2019-06</date><risdate>2019</risdate><volume>185</volume><spage>455</spage><epage>468</epage><pages>455-468</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defects that affect the cell output. Electroluminescence (EL) imaging is a useful modality for the inspection of photovoltaic (PV) modules. EL images provide high spatial resolution, which makes it possible to detect even finest defects on the surface of PV modules. However, the analysis of EL images is typically a manual process that is expensive, time-consuming, and requires expert knowledge of many different types of defects. In this work, we investigate two approaches for automatic detection of such defects in a single image of a PV cell. The approaches differ in their hardware requirements, which are dictated by their respective application scenarios. The more hardware-efficient approach is based on hand-crafted features that are classified in a Support Vector Machine (SVM). To obtain a strong performance, we investigate and compare various processing variants. The more hardware-demanding approach uses an end-to-end deep Convolutional Neural Network (CNN) that runs on a Graphics Processing Unit (GPU). Both approaches are trained on 1968 cells extracted from high resolution EL intensity images of mono- and polycrystalline PV modules. The CNN is more accurate, and reaches an average accuracy of 88.42%. The SVM achieves a slightly lower average accuracy of 82.44%, but can run on arbitrary hardware. Both automated approaches make continuous, highly accurate monitoring of PV cells feasible.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2019.02.067</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8865-8066</orcidid><orcidid>https://orcid.org/0000-0003-0455-3799</orcidid><orcidid>https://orcid.org/0000-0002-5556-5338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2019-06, Vol.185, p.455-468
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2243449388
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural networks
Automation
Deep learning
Defect classification
Defects
Electroluminescence
Electroluminescence imaging
Graphics processing units
Hardware
Image classification
Image detection
Image resolution
Inspection
Modules
Neural networks
Photovoltaic cells
Photovoltaic modules
Photovoltaics
Regression analysis
Solar cells
Solar energy
Spatial discrimination
Spatial resolution
Support vector machines
Visual inspection
title Automatic classification of defective photovoltaic module cells in electroluminescence images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20classification%20of%20defective%20photovoltaic%20module%20cells%20in%20electroluminescence%20images&rft.jtitle=Solar%20energy&rft.au=Deitsch,%20Sergiu&rft.date=2019-06&rft.volume=185&rft.spage=455&rft.epage=468&rft.pages=455-468&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2019.02.067&rft_dat=%3Cproquest_cross%3E2243449388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243449388&rft_id=info:pmid/&rft_els_id=S0038092X19302014&rfr_iscdi=true