Automatic classification of defective photovoltaic module cells in electroluminescence images
•We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defect...
Gespeichert in:
Veröffentlicht in: | Solar energy 2019-06, Vol.185, p.455-468 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | |
container_start_page | 455 |
container_title | Solar energy |
container_volume | 185 |
creator | Deitsch, Sergiu Christlein, Vincent Berger, Stephan Buerhop-Lutz, Claudia Maier, Andreas Gallwitz, Florian Riess, Christian |
description | •We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defects that affect the cell output.
Electroluminescence (EL) imaging is a useful modality for the inspection of photovoltaic (PV) modules. EL images provide high spatial resolution, which makes it possible to detect even finest defects on the surface of PV modules. However, the analysis of EL images is typically a manual process that is expensive, time-consuming, and requires expert knowledge of many different types of defects.
In this work, we investigate two approaches for automatic detection of such defects in a single image of a PV cell. The approaches differ in their hardware requirements, which are dictated by their respective application scenarios. The more hardware-efficient approach is based on hand-crafted features that are classified in a Support Vector Machine (SVM). To obtain a strong performance, we investigate and compare various processing variants. The more hardware-demanding approach uses an end-to-end deep Convolutional Neural Network (CNN) that runs on a Graphics Processing Unit (GPU). Both approaches are trained on 1968 cells extracted from high resolution EL intensity images of mono- and polycrystalline PV modules. The CNN is more accurate, and reaches an average accuracy of 88.42%. The SVM achieves a slightly lower average accuracy of 82.44%, but can run on arbitrary hardware. Both automated approaches make continuous, highly accurate monitoring of PV cells feasible. |
doi_str_mv | 10.1016/j.solener.2019.02.067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243449388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X19302014</els_id><sourcerecordid>2243449388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-9051cef274f8923c30e2e4e4d0bfec5b48c19b85179930d9eb54ed1e366a3c5b3</originalsourceid><addsrcrecordid>eNqFUMtKBDEQDKLguvoJQsDzjJ3HPHKSZfEFC14UvEiYyfRohuxkTWYW_HuzrHdPTdNV1VVFyDWDnAErb4c8eocjhpwDUznwHMrqhCyYrFjGeFGdkgWAqDNQ_P2cXMQ4ALCK1dWCfKzmyW-byRpqXBOj7a1Jmx-p72mHPZrJ7pHuvvzk995NTQJufTc7pAadi9SOFF1CBe_mrR0xGhwNUrttPjFekrO-cRGv_uaSvD3cv66fss3L4_N6tcmMBDFlCgpmsOeV7GvFhRGAHCXKDtpkoGhlbZhq64JVSgnoFLaFxI6hKMtGpLtYkpuj7i747xnjpAc_hzG91JxLIaUSdZ1QxRFlgo8xYK93IfkMP5qBPjSpB_3XpD40qYHr1GTi3R15mCLsbbpGYw8pOxtSct15-4_CLx05gZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243449388</pqid></control><display><type>article</type><title>Automatic classification of defective photovoltaic module cells in electroluminescence images</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Deitsch, Sergiu ; Christlein, Vincent ; Berger, Stephan ; Buerhop-Lutz, Claudia ; Maier, Andreas ; Gallwitz, Florian ; Riess, Christian</creator><creatorcontrib>Deitsch, Sergiu ; Christlein, Vincent ; Berger, Stephan ; Buerhop-Lutz, Claudia ; Maier, Andreas ; Gallwitz, Florian ; Riess, Christian</creatorcontrib><description>•We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defects that affect the cell output.
Electroluminescence (EL) imaging is a useful modality for the inspection of photovoltaic (PV) modules. EL images provide high spatial resolution, which makes it possible to detect even finest defects on the surface of PV modules. However, the analysis of EL images is typically a manual process that is expensive, time-consuming, and requires expert knowledge of many different types of defects.
In this work, we investigate two approaches for automatic detection of such defects in a single image of a PV cell. The approaches differ in their hardware requirements, which are dictated by their respective application scenarios. The more hardware-efficient approach is based on hand-crafted features that are classified in a Support Vector Machine (SVM). To obtain a strong performance, we investigate and compare various processing variants. The more hardware-demanding approach uses an end-to-end deep Convolutional Neural Network (CNN) that runs on a Graphics Processing Unit (GPU). Both approaches are trained on 1968 cells extracted from high resolution EL intensity images of mono- and polycrystalline PV modules. The CNN is more accurate, and reaches an average accuracy of 88.42%. The SVM achieves a slightly lower average accuracy of 82.44%, but can run on arbitrary hardware. Both automated approaches make continuous, highly accurate monitoring of PV cells feasible.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2019.02.067</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Artificial neural networks ; Automation ; Deep learning ; Defect classification ; Defects ; Electroluminescence ; Electroluminescence imaging ; Graphics processing units ; Hardware ; Image classification ; Image detection ; Image resolution ; Inspection ; Modules ; Neural networks ; Photovoltaic cells ; Photovoltaic modules ; Photovoltaics ; Regression analysis ; Solar cells ; Solar energy ; Spatial discrimination ; Spatial resolution ; Support vector machines ; Visual inspection</subject><ispartof>Solar energy, 2019-06, Vol.185, p.455-468</ispartof><rights>2019 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-9051cef274f8923c30e2e4e4d0bfec5b48c19b85179930d9eb54ed1e366a3c5b3</citedby><cites>FETCH-LOGICAL-c403t-9051cef274f8923c30e2e4e4d0bfec5b48c19b85179930d9eb54ed1e366a3c5b3</cites><orcidid>0000-0001-8865-8066 ; 0000-0003-0455-3799 ; 0000-0002-5556-5338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2019.02.067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Deitsch, Sergiu</creatorcontrib><creatorcontrib>Christlein, Vincent</creatorcontrib><creatorcontrib>Berger, Stephan</creatorcontrib><creatorcontrib>Buerhop-Lutz, Claudia</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Gallwitz, Florian</creatorcontrib><creatorcontrib>Riess, Christian</creatorcontrib><title>Automatic classification of defective photovoltaic module cells in electroluminescence images</title><title>Solar energy</title><description>•We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defects that affect the cell output.
Electroluminescence (EL) imaging is a useful modality for the inspection of photovoltaic (PV) modules. EL images provide high spatial resolution, which makes it possible to detect even finest defects on the surface of PV modules. However, the analysis of EL images is typically a manual process that is expensive, time-consuming, and requires expert knowledge of many different types of defects.
In this work, we investigate two approaches for automatic detection of such defects in a single image of a PV cell. The approaches differ in their hardware requirements, which are dictated by their respective application scenarios. The more hardware-efficient approach is based on hand-crafted features that are classified in a Support Vector Machine (SVM). To obtain a strong performance, we investigate and compare various processing variants. The more hardware-demanding approach uses an end-to-end deep Convolutional Neural Network (CNN) that runs on a Graphics Processing Unit (GPU). Both approaches are trained on 1968 cells extracted from high resolution EL intensity images of mono- and polycrystalline PV modules. The CNN is more accurate, and reaches an average accuracy of 88.42%. The SVM achieves a slightly lower average accuracy of 82.44%, but can run on arbitrary hardware. Both automated approaches make continuous, highly accurate monitoring of PV cells feasible.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Deep learning</subject><subject>Defect classification</subject><subject>Defects</subject><subject>Electroluminescence</subject><subject>Electroluminescence imaging</subject><subject>Graphics processing units</subject><subject>Hardware</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Image resolution</subject><subject>Inspection</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic modules</subject><subject>Photovoltaics</subject><subject>Regression analysis</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Support vector machines</subject><subject>Visual inspection</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKBDEQDKLguvoJQsDzjJ3HPHKSZfEFC14UvEiYyfRohuxkTWYW_HuzrHdPTdNV1VVFyDWDnAErb4c8eocjhpwDUznwHMrqhCyYrFjGeFGdkgWAqDNQ_P2cXMQ4ALCK1dWCfKzmyW-byRpqXBOj7a1Jmx-p72mHPZrJ7pHuvvzk995NTQJufTc7pAadi9SOFF1CBe_mrR0xGhwNUrttPjFekrO-cRGv_uaSvD3cv66fss3L4_N6tcmMBDFlCgpmsOeV7GvFhRGAHCXKDtpkoGhlbZhq64JVSgnoFLaFxI6hKMtGpLtYkpuj7i747xnjpAc_hzG91JxLIaUSdZ1QxRFlgo8xYK93IfkMP5qBPjSpB_3XpD40qYHr1GTi3R15mCLsbbpGYw8pOxtSct15-4_CLx05gZU</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Deitsch, Sergiu</creator><creator>Christlein, Vincent</creator><creator>Berger, Stephan</creator><creator>Buerhop-Lutz, Claudia</creator><creator>Maier, Andreas</creator><creator>Gallwitz, Florian</creator><creator>Riess, Christian</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8865-8066</orcidid><orcidid>https://orcid.org/0000-0003-0455-3799</orcidid><orcidid>https://orcid.org/0000-0002-5556-5338</orcidid></search><sort><creationdate>201906</creationdate><title>Automatic classification of defective photovoltaic module cells in electroluminescence images</title><author>Deitsch, Sergiu ; Christlein, Vincent ; Berger, Stephan ; Buerhop-Lutz, Claudia ; Maier, Andreas ; Gallwitz, Florian ; Riess, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-9051cef274f8923c30e2e4e4d0bfec5b48c19b85179930d9eb54ed1e366a3c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Deep learning</topic><topic>Defect classification</topic><topic>Defects</topic><topic>Electroluminescence</topic><topic>Electroluminescence imaging</topic><topic>Graphics processing units</topic><topic>Hardware</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Image resolution</topic><topic>Inspection</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic modules</topic><topic>Photovoltaics</topic><topic>Regression analysis</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Support vector machines</topic><topic>Visual inspection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deitsch, Sergiu</creatorcontrib><creatorcontrib>Christlein, Vincent</creatorcontrib><creatorcontrib>Berger, Stephan</creatorcontrib><creatorcontrib>Buerhop-Lutz, Claudia</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><creatorcontrib>Gallwitz, Florian</creatorcontrib><creatorcontrib>Riess, Christian</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deitsch, Sergiu</au><au>Christlein, Vincent</au><au>Berger, Stephan</au><au>Buerhop-Lutz, Claudia</au><au>Maier, Andreas</au><au>Gallwitz, Florian</au><au>Riess, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic classification of defective photovoltaic module cells in electroluminescence images</atitle><jtitle>Solar energy</jtitle><date>2019-06</date><risdate>2019</risdate><volume>185</volume><spage>455</spage><epage>468</epage><pages>455-468</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•We classify defects of solar cells in electroluminescence images with two methods.•One approach uses a support vector machine for fast results on mobile hardware.•The second method with a convolutional neural network achieves even higher accuracy.•Both methods allow continuous monitoring for defects that affect the cell output.
Electroluminescence (EL) imaging is a useful modality for the inspection of photovoltaic (PV) modules. EL images provide high spatial resolution, which makes it possible to detect even finest defects on the surface of PV modules. However, the analysis of EL images is typically a manual process that is expensive, time-consuming, and requires expert knowledge of many different types of defects.
In this work, we investigate two approaches for automatic detection of such defects in a single image of a PV cell. The approaches differ in their hardware requirements, which are dictated by their respective application scenarios. The more hardware-efficient approach is based on hand-crafted features that are classified in a Support Vector Machine (SVM). To obtain a strong performance, we investigate and compare various processing variants. The more hardware-demanding approach uses an end-to-end deep Convolutional Neural Network (CNN) that runs on a Graphics Processing Unit (GPU). Both approaches are trained on 1968 cells extracted from high resolution EL intensity images of mono- and polycrystalline PV modules. The CNN is more accurate, and reaches an average accuracy of 88.42%. The SVM achieves a slightly lower average accuracy of 82.44%, but can run on arbitrary hardware. Both automated approaches make continuous, highly accurate monitoring of PV cells feasible.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2019.02.067</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8865-8066</orcidid><orcidid>https://orcid.org/0000-0003-0455-3799</orcidid><orcidid>https://orcid.org/0000-0002-5556-5338</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2019-06, Vol.185, p.455-468 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_journals_2243449388 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Artificial neural networks Automation Deep learning Defect classification Defects Electroluminescence Electroluminescence imaging Graphics processing units Hardware Image classification Image detection Image resolution Inspection Modules Neural networks Photovoltaic cells Photovoltaic modules Photovoltaics Regression analysis Solar cells Solar energy Spatial discrimination Spatial resolution Support vector machines Visual inspection |
title | Automatic classification of defective photovoltaic module cells in electroluminescence images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20classification%20of%20defective%20photovoltaic%20module%20cells%20in%20electroluminescence%20images&rft.jtitle=Solar%20energy&rft.au=Deitsch,%20Sergiu&rft.date=2019-06&rft.volume=185&rft.spage=455&rft.epage=468&rft.pages=455-468&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2019.02.067&rft_dat=%3Cproquest_cross%3E2243449388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243449388&rft_id=info:pmid/&rft_els_id=S0038092X19302014&rfr_iscdi=true |