Dynamic monopolies in two-way bootstrap percolation

We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2019-06, Vol.262, p.116-126
Hauptverfasser: Jeger, Clemens, Zehmakan, Ahad N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue
container_start_page 116
container_title Discrete Applied Mathematics
container_volume 262
creator Jeger, Clemens
Zehmakan, Ahad N.
description We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least r active neighbors, and an active vertex stays active forever. In the two-way r−bootstrap percolation, each vertex gets active if it has at least r active neighbors, and inactive otherwise. We consider the following question on thed-dimensional torus: how many vertices must be initially active so that the whole graph becomes active? Our results settle an open problem by Balister et al. (2010) and generalize the results by Flocchini et al. (2004).
doi_str_mv 10.1016/j.dam.2019.02.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243449347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X19300940</els_id><sourcerecordid>2243449347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-dab00b197ea0f7f1ce01b5728ca9d033f63035b37f4f1cb75cd7d81c28f81ac73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zSbdJ8STrJyx4UfAW0jSBlG1Tk6yy_94s69nTMMz7zAwPIdcIFQI2t0PVq7GigG0FtALEE7JAwWnZcI6nZJEzTUlRfJ6TixgHAMDcLQh72E9qdLoY_eRnv3UmFm4q0o8vf9S-6LxPMQU1F7MJ2m9Vcn66JGdWbaO5-qtL8vH0-L5-KTdvz6_r-02pWSNS2asOoMOWGwWWW9QGsFtxKrRqe2DMNgzYqmPc1nnY8ZXueS9QU2EFKs3Zktwc987Bf-1MTHLwuzDlk5LSmtV1y-pDCo8pHXyMwVg5BzeqsJcI8uBGDjK7kQc3EqjMbjJzd2RMfv_bmSCjdmbSpnfB6CR77_6hfwEmFmwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243449347</pqid></control><display><type>article</type><title>Dynamic monopolies in two-way bootstrap percolation</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jeger, Clemens ; Zehmakan, Ahad N.</creator><creatorcontrib>Jeger, Clemens ; Zehmakan, Ahad N.</creatorcontrib><description>We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least r active neighbors, and an active vertex stays active forever. In the two-way r−bootstrap percolation, each vertex gets active if it has at least r active neighbors, and inactive otherwise. We consider the following question on thed-dimensional torus: how many vertices must be initially active so that the whole graph becomes active? Our results settle an open problem by Balister et al. (2010) and generalize the results by Flocchini et al. (2004).</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.02.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Apexes ; Bootstrap percolation ; Dynamic monopoly ; Graph theory ; Majority rule ; Monopolies ; Percolating set ; Percolation ; Questions ; r-threshold model ; Toruses</subject><ispartof>Discrete Applied Mathematics, 2019-06, Vol.262, p.116-126</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-dab00b197ea0f7f1ce01b5728ca9d033f63035b37f4f1cb75cd7d81c28f81ac73</citedby><cites>FETCH-LOGICAL-c368t-dab00b197ea0f7f1ce01b5728ca9d033f63035b37f4f1cb75cd7d81c28f81ac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X19300940$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Jeger, Clemens</creatorcontrib><creatorcontrib>Zehmakan, Ahad N.</creatorcontrib><title>Dynamic monopolies in two-way bootstrap percolation</title><title>Discrete Applied Mathematics</title><description>We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least r active neighbors, and an active vertex stays active forever. In the two-way r−bootstrap percolation, each vertex gets active if it has at least r active neighbors, and inactive otherwise. We consider the following question on thed-dimensional torus: how many vertices must be initially active so that the whole graph becomes active? Our results settle an open problem by Balister et al. (2010) and generalize the results by Flocchini et al. (2004).</description><subject>Apexes</subject><subject>Bootstrap percolation</subject><subject>Dynamic monopoly</subject><subject>Graph theory</subject><subject>Majority rule</subject><subject>Monopolies</subject><subject>Percolating set</subject><subject>Percolation</subject><subject>Questions</subject><subject>r-threshold model</subject><subject>Toruses</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zSbdJ8STrJyx4UfAW0jSBlG1Tk6yy_94s69nTMMz7zAwPIdcIFQI2t0PVq7GigG0FtALEE7JAwWnZcI6nZJEzTUlRfJ6TixgHAMDcLQh72E9qdLoY_eRnv3UmFm4q0o8vf9S-6LxPMQU1F7MJ2m9Vcn66JGdWbaO5-qtL8vH0-L5-KTdvz6_r-02pWSNS2asOoMOWGwWWW9QGsFtxKrRqe2DMNgzYqmPc1nnY8ZXueS9QU2EFKs3Zktwc987Bf-1MTHLwuzDlk5LSmtV1y-pDCo8pHXyMwVg5BzeqsJcI8uBGDjK7kQc3EqjMbjJzd2RMfv_bmSCjdmbSpnfB6CR77_6hfwEmFmwM</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Jeger, Clemens</creator><creator>Zehmakan, Ahad N.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190615</creationdate><title>Dynamic monopolies in two-way bootstrap percolation</title><author>Jeger, Clemens ; Zehmakan, Ahad N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-dab00b197ea0f7f1ce01b5728ca9d033f63035b37f4f1cb75cd7d81c28f81ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Bootstrap percolation</topic><topic>Dynamic monopoly</topic><topic>Graph theory</topic><topic>Majority rule</topic><topic>Monopolies</topic><topic>Percolating set</topic><topic>Percolation</topic><topic>Questions</topic><topic>r-threshold model</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeger, Clemens</creatorcontrib><creatorcontrib>Zehmakan, Ahad N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeger, Clemens</au><au>Zehmakan, Ahad N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic monopolies in two-way bootstrap percolation</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>262</volume><spage>116</spage><epage>126</epage><pages>116-126</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least r active neighbors, and an active vertex stays active forever. In the two-way r−bootstrap percolation, each vertex gets active if it has at least r active neighbors, and inactive otherwise. We consider the following question on thed-dimensional torus: how many vertices must be initially active so that the whole graph becomes active? Our results settle an open problem by Balister et al. (2010) and generalize the results by Flocchini et al. (2004).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2019.02.011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2019-06, Vol.262, p.116-126
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2243449347
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Apexes
Bootstrap percolation
Dynamic monopoly
Graph theory
Majority rule
Monopolies
Percolating set
Percolation
Questions
r-threshold model
Toruses
title Dynamic monopolies in two-way bootstrap percolation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20monopolies%20in%20two-way%20bootstrap%20percolation&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Jeger,%20Clemens&rft.date=2019-06-15&rft.volume=262&rft.spage=116&rft.epage=126&rft.pages=116-126&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.02.011&rft_dat=%3Cproquest_cross%3E2243449347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243449347&rft_id=info:pmid/&rft_els_id=S0166218X19300940&rfr_iscdi=true