Dynamic monopolies in two-way bootstrap percolation
We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at le...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-06, Vol.262, p.116-126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 126 |
---|---|
container_issue | |
container_start_page | 116 |
container_title | Discrete Applied Mathematics |
container_volume | 262 |
creator | Jeger, Clemens Zehmakan, Ahad N. |
description | We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least r active neighbors, and an active vertex stays active forever. In the two-way r−bootstrap percolation, each vertex gets active if it has at least r active neighbors, and inactive otherwise. We consider the following question on thed-dimensional torus: how many vertices must be initially active so that the whole graph becomes active? Our results settle an open problem by Balister et al. (2010) and generalize the results by Flocchini et al. (2004). |
doi_str_mv | 10.1016/j.dam.2019.02.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243449347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X19300940</els_id><sourcerecordid>2243449347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-dab00b197ea0f7f1ce01b5728ca9d033f63035b37f4f1cb75cd7d81c28f81ac73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zSbdJ8STrJyx4UfAW0jSBlG1Tk6yy_94s69nTMMz7zAwPIdcIFQI2t0PVq7GigG0FtALEE7JAwWnZcI6nZJEzTUlRfJ6TixgHAMDcLQh72E9qdLoY_eRnv3UmFm4q0o8vf9S-6LxPMQU1F7MJ2m9Vcn66JGdWbaO5-qtL8vH0-L5-KTdvz6_r-02pWSNS2asOoMOWGwWWW9QGsFtxKrRqe2DMNgzYqmPc1nnY8ZXueS9QU2EFKs3Zktwc987Bf-1MTHLwuzDlk5LSmtV1y-pDCo8pHXyMwVg5BzeqsJcI8uBGDjK7kQc3EqjMbjJzd2RMfv_bmSCjdmbSpnfB6CR77_6hfwEmFmwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243449347</pqid></control><display><type>article</type><title>Dynamic monopolies in two-way bootstrap percolation</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jeger, Clemens ; Zehmakan, Ahad N.</creator><creatorcontrib>Jeger, Clemens ; Zehmakan, Ahad N.</creatorcontrib><description>We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least r active neighbors, and an active vertex stays active forever. In the two-way r−bootstrap percolation, each vertex gets active if it has at least r active neighbors, and inactive otherwise. We consider the following question on thed-dimensional torus: how many vertices must be initially active so that the whole graph becomes active? Our results settle an open problem by Balister et al. (2010) and generalize the results by Flocchini et al. (2004).</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.02.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Apexes ; Bootstrap percolation ; Dynamic monopoly ; Graph theory ; Majority rule ; Monopolies ; Percolating set ; Percolation ; Questions ; r-threshold model ; Toruses</subject><ispartof>Discrete Applied Mathematics, 2019-06, Vol.262, p.116-126</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-dab00b197ea0f7f1ce01b5728ca9d033f63035b37f4f1cb75cd7d81c28f81ac73</citedby><cites>FETCH-LOGICAL-c368t-dab00b197ea0f7f1ce01b5728ca9d033f63035b37f4f1cb75cd7d81c28f81ac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X19300940$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Jeger, Clemens</creatorcontrib><creatorcontrib>Zehmakan, Ahad N.</creatorcontrib><title>Dynamic monopolies in two-way bootstrap percolation</title><title>Discrete Applied Mathematics</title><description>We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least r active neighbors, and an active vertex stays active forever. In the two-way r−bootstrap percolation, each vertex gets active if it has at least r active neighbors, and inactive otherwise. We consider the following question on thed-dimensional torus: how many vertices must be initially active so that the whole graph becomes active? Our results settle an open problem by Balister et al. (2010) and generalize the results by Flocchini et al. (2004).</description><subject>Apexes</subject><subject>Bootstrap percolation</subject><subject>Dynamic monopoly</subject><subject>Graph theory</subject><subject>Majority rule</subject><subject>Monopolies</subject><subject>Percolating set</subject><subject>Percolation</subject><subject>Questions</subject><subject>r-threshold model</subject><subject>Toruses</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz60zSbdJ8STrJyx4UfAW0jSBlG1Tk6yy_94s69nTMMz7zAwPIdcIFQI2t0PVq7GigG0FtALEE7JAwWnZcI6nZJEzTUlRfJ6TixgHAMDcLQh72E9qdLoY_eRnv3UmFm4q0o8vf9S-6LxPMQU1F7MJ2m9Vcn66JGdWbaO5-qtL8vH0-L5-KTdvz6_r-02pWSNS2asOoMOWGwWWW9QGsFtxKrRqe2DMNgzYqmPc1nnY8ZXueS9QU2EFKs3Zktwc987Bf-1MTHLwuzDlk5LSmtV1y-pDCo8pHXyMwVg5BzeqsJcI8uBGDjK7kQc3EqjMbjJzd2RMfv_bmSCjdmbSpnfB6CR77_6hfwEmFmwM</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Jeger, Clemens</creator><creator>Zehmakan, Ahad N.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190615</creationdate><title>Dynamic monopolies in two-way bootstrap percolation</title><author>Jeger, Clemens ; Zehmakan, Ahad N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-dab00b197ea0f7f1ce01b5728ca9d033f63035b37f4f1cb75cd7d81c28f81ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Bootstrap percolation</topic><topic>Dynamic monopoly</topic><topic>Graph theory</topic><topic>Majority rule</topic><topic>Monopolies</topic><topic>Percolating set</topic><topic>Percolation</topic><topic>Questions</topic><topic>r-threshold model</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeger, Clemens</creatorcontrib><creatorcontrib>Zehmakan, Ahad N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeger, Clemens</au><au>Zehmakan, Ahad N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic monopolies in two-way bootstrap percolation</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>262</volume><spage>116</spage><epage>126</epage><pages>116-126</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We study an extremal question for the (two-way) r−bootstrap percolation processes. Given a graph and an initial configuration where each vertex is active or inactive, in the r−bootstrap percolation process the following rule is applied in discrete-time rounds: each vertex gets active if it has at least r active neighbors, and an active vertex stays active forever. In the two-way r−bootstrap percolation, each vertex gets active if it has at least r active neighbors, and inactive otherwise. We consider the following question on thed-dimensional torus: how many vertices must be initially active so that the whole graph becomes active? Our results settle an open problem by Balister et al. (2010) and generalize the results by Flocchini et al. (2004).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2019.02.011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2019-06, Vol.262, p.116-126 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2243449347 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Apexes Bootstrap percolation Dynamic monopoly Graph theory Majority rule Monopolies Percolating set Percolation Questions r-threshold model Toruses |
title | Dynamic monopolies in two-way bootstrap percolation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20monopolies%20in%20two-way%20bootstrap%20percolation&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Jeger,%20Clemens&rft.date=2019-06-15&rft.volume=262&rft.spage=116&rft.epage=126&rft.pages=116-126&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.02.011&rft_dat=%3Cproquest_cross%3E2243449347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243449347&rft_id=info:pmid/&rft_els_id=S0166218X19300940&rfr_iscdi=true |