Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks
A connectivity based k -coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keep...
Gespeichert in:
Veröffentlicht in: | Mobile networks and applications 2020-04, Vol.25 (2), p.783-793 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 793 |
---|---|
container_issue | 2 |
container_start_page | 783 |
container_title | Mobile networks and applications |
container_volume | 25 |
creator | Yan, Feng Ma, Wenyu Shen, Fei Xia, Weiwei Shen, Lianfeng |
description | A connectivity based
k
-coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keeping the homology intact. Then a connectivity-based algorithm is proposed for discovering boundary cycles of non-triangular
k
-coverage holes. The algorithm consists of two parts, one part is 1-coverage hole detection and the other part is coverage degree reduction. In the 1-coverage hole detection part, boundary cycles of 1-coverage holes are found. In the coverage degree reduction part, an independent covering subset of nodes for the covered region is found and these nodes are set to dormant state to decrease the coverage degree of the target region by one. The
k
-coverage hole detection algorithm is an iterative process of the two parts. Computation complexity of the algorithm is analyzed and simulation results show that more than 95% of non-triangular
k
-coverage holes can be accurately detected by our algorithm. |
doi_str_mv | 10.1007/s11036-019-01301-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243175876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243175876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ae216a9c43c75a98c2b21234c8eec458504f227f5dcae16276413e604a6033df3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4_EqyhPAoUgULQLCzjDup0pa42GlR_p6UILFjMZpZnHtHOoScAj8HzrOLBMClYRyKfiQH1u2REehMsBy03O9vmUumTPF2SI5SWnDOtc7ViEzK0DTo23pbtx29cglndMnKsMXo5kgnYYX0GtsdERpaN_S1jrjClOgTNilE-oDtV4jLdEwOKrdKePK7x-Tl9ua5nLDp4919eTllXkLRMocCjCu8kj7Trsi9eBcgpPI5olc611xVQmSVnnmHYERmFEg0XDnDpZxVckzOht51DJ8bTK1dhE1s-pdWCCUh03lmekoMlI8hpYiVXcf6w8XOArc7Y3YwZntj9seY7fqQHEKph5s5xr_qf1Lf3dFuEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243175876</pqid></control><display><type>article</type><title>Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yan, Feng ; Ma, Wenyu ; Shen, Fei ; Xia, Weiwei ; Shen, Lianfeng</creator><creatorcontrib>Yan, Feng ; Ma, Wenyu ; Shen, Fei ; Xia, Weiwei ; Shen, Lianfeng</creatorcontrib><description>A connectivity based
k
-coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keeping the homology intact. Then a connectivity-based algorithm is proposed for discovering boundary cycles of non-triangular
k
-coverage holes. The algorithm consists of two parts, one part is 1-coverage hole detection and the other part is coverage degree reduction. In the 1-coverage hole detection part, boundary cycles of 1-coverage holes are found. In the coverage degree reduction part, an independent covering subset of nodes for the covered region is found and these nodes are set to dormant state to decrease the coverage degree of the target region by one. The
k
-coverage hole detection algorithm is an iterative process of the two parts. Computation complexity of the algorithm is analyzed and simulation results show that more than 95% of non-triangular
k
-coverage holes can be accurately detected by our algorithm.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-019-01301-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Communications Engineering ; Complexity ; Computer Communication Networks ; Computer simulation ; Connectivity ; Degree reduction ; Deletion ; Electrical Engineering ; Engineering ; Homology ; IT in Business ; Iterative methods ; Network topologies ; Networks ; Nodes ; Remote sensors ; Wireless sensor networks</subject><ispartof>Mobile networks and applications, 2020-04, Vol.25 (2), p.783-793</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ae216a9c43c75a98c2b21234c8eec458504f227f5dcae16276413e604a6033df3</citedby><cites>FETCH-LOGICAL-c319t-ae216a9c43c75a98c2b21234c8eec458504f227f5dcae16276413e604a6033df3</cites><orcidid>0000-0002-8387-1754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-019-01301-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-019-01301-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yan, Feng</creatorcontrib><creatorcontrib>Ma, Wenyu</creatorcontrib><creatorcontrib>Shen, Fei</creatorcontrib><creatorcontrib>Xia, Weiwei</creatorcontrib><creatorcontrib>Shen, Lianfeng</creatorcontrib><title>Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>A connectivity based
k
-coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keeping the homology intact. Then a connectivity-based algorithm is proposed for discovering boundary cycles of non-triangular
k
-coverage holes. The algorithm consists of two parts, one part is 1-coverage hole detection and the other part is coverage degree reduction. In the 1-coverage hole detection part, boundary cycles of 1-coverage holes are found. In the coverage degree reduction part, an independent covering subset of nodes for the covered region is found and these nodes are set to dormant state to decrease the coverage degree of the target region by one. The
k
-coverage hole detection algorithm is an iterative process of the two parts. Computation complexity of the algorithm is analyzed and simulation results show that more than 95% of non-triangular
k
-coverage holes can be accurately detected by our algorithm.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Complexity</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Connectivity</subject><subject>Degree reduction</subject><subject>Deletion</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Homology</subject><subject>IT in Business</subject><subject>Iterative methods</subject><subject>Network topologies</subject><subject>Networks</subject><subject>Nodes</subject><subject>Remote sensors</subject><subject>Wireless sensor networks</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4_EqyhPAoUgULQLCzjDup0pa42GlR_p6UILFjMZpZnHtHOoScAj8HzrOLBMClYRyKfiQH1u2REehMsBy03O9vmUumTPF2SI5SWnDOtc7ViEzK0DTo23pbtx29cglndMnKsMXo5kgnYYX0GtsdERpaN_S1jrjClOgTNilE-oDtV4jLdEwOKrdKePK7x-Tl9ua5nLDp4919eTllXkLRMocCjCu8kj7Trsi9eBcgpPI5olc611xVQmSVnnmHYERmFEg0XDnDpZxVckzOht51DJ8bTK1dhE1s-pdWCCUh03lmekoMlI8hpYiVXcf6w8XOArc7Y3YwZntj9seY7fqQHEKph5s5xr_qf1Lf3dFuEA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yan, Feng</creator><creator>Ma, Wenyu</creator><creator>Shen, Fei</creator><creator>Xia, Weiwei</creator><creator>Shen, Lianfeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8387-1754</orcidid></search><sort><creationdate>20200401</creationdate><title>Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks</title><author>Yan, Feng ; Ma, Wenyu ; Shen, Fei ; Xia, Weiwei ; Shen, Lianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ae216a9c43c75a98c2b21234c8eec458504f227f5dcae16276413e604a6033df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Complexity</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Connectivity</topic><topic>Degree reduction</topic><topic>Deletion</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Homology</topic><topic>IT in Business</topic><topic>Iterative methods</topic><topic>Network topologies</topic><topic>Networks</topic><topic>Nodes</topic><topic>Remote sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Feng</creatorcontrib><creatorcontrib>Ma, Wenyu</creatorcontrib><creatorcontrib>Shen, Fei</creatorcontrib><creatorcontrib>Xia, Weiwei</creatorcontrib><creatorcontrib>Shen, Lianfeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Feng</au><au>Ma, Wenyu</au><au>Shen, Fei</au><au>Xia, Weiwei</au><au>Shen, Lianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>25</volume><issue>2</issue><spage>783</spage><epage>793</epage><pages>783-793</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>A connectivity based
k
-coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keeping the homology intact. Then a connectivity-based algorithm is proposed for discovering boundary cycles of non-triangular
k
-coverage holes. The algorithm consists of two parts, one part is 1-coverage hole detection and the other part is coverage degree reduction. In the 1-coverage hole detection part, boundary cycles of 1-coverage holes are found. In the coverage degree reduction part, an independent covering subset of nodes for the covered region is found and these nodes are set to dormant state to decrease the coverage degree of the target region by one. The
k
-coverage hole detection algorithm is an iterative process of the two parts. Computation complexity of the algorithm is analyzed and simulation results show that more than 95% of non-triangular
k
-coverage holes can be accurately detected by our algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-019-01301-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8387-1754</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1383-469X |
ispartof | Mobile networks and applications, 2020-04, Vol.25 (2), p.783-793 |
issn | 1383-469X 1572-8153 |
language | eng |
recordid | cdi_proquest_journals_2243175876 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Communications Engineering Complexity Computer Communication Networks Computer simulation Connectivity Degree reduction Deletion Electrical Engineering Engineering Homology IT in Business Iterative methods Network topologies Networks Nodes Remote sensors Wireless sensor networks |
title | Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectivity%20Based%20k-Coverage%20Hole%20Detection%20in%20Wireless%20Sensor%20Networks&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Yan,%20Feng&rft.date=2020-04-01&rft.volume=25&rft.issue=2&rft.spage=783&rft.epage=793&rft.pages=783-793&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-019-01301-y&rft_dat=%3Cproquest_cross%3E2243175876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243175876&rft_id=info:pmid/&rfr_iscdi=true |