Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks

A connectivity based k -coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2020-04, Vol.25 (2), p.783-793
Hauptverfasser: Yan, Feng, Ma, Wenyu, Shen, Fei, Xia, Weiwei, Shen, Lianfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 793
container_issue 2
container_start_page 783
container_title Mobile networks and applications
container_volume 25
creator Yan, Feng
Ma, Wenyu
Shen, Fei
Xia, Weiwei
Shen, Lianfeng
description A connectivity based k -coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keeping the homology intact. Then a connectivity-based algorithm is proposed for discovering boundary cycles of non-triangular k -coverage holes. The algorithm consists of two parts, one part is 1-coverage hole detection and the other part is coverage degree reduction. In the 1-coverage hole detection part, boundary cycles of 1-coverage holes are found. In the coverage degree reduction part, an independent covering subset of nodes for the covered region is found and these nodes are set to dormant state to decrease the coverage degree of the target region by one. The k -coverage hole detection algorithm is an iterative process of the two parts. Computation complexity of the algorithm is analyzed and simulation results show that more than 95% of non-triangular k -coverage holes can be accurately detected by our algorithm.
doi_str_mv 10.1007/s11036-019-01301-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2243175876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2243175876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ae216a9c43c75a98c2b21234c8eec458504f227f5dcae16276413e604a6033df3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4_EqyhPAoUgULQLCzjDup0pa42GlR_p6UILFjMZpZnHtHOoScAj8HzrOLBMClYRyKfiQH1u2REehMsBy03O9vmUumTPF2SI5SWnDOtc7ViEzK0DTo23pbtx29cglndMnKsMXo5kgnYYX0GtsdERpaN_S1jrjClOgTNilE-oDtV4jLdEwOKrdKePK7x-Tl9ua5nLDp4919eTllXkLRMocCjCu8kj7Trsi9eBcgpPI5olc611xVQmSVnnmHYERmFEg0XDnDpZxVckzOht51DJ8bTK1dhE1s-pdWCCUh03lmekoMlI8hpYiVXcf6w8XOArc7Y3YwZntj9seY7fqQHEKph5s5xr_qf1Lf3dFuEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243175876</pqid></control><display><type>article</type><title>Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yan, Feng ; Ma, Wenyu ; Shen, Fei ; Xia, Weiwei ; Shen, Lianfeng</creator><creatorcontrib>Yan, Feng ; Ma, Wenyu ; Shen, Fei ; Xia, Weiwei ; Shen, Lianfeng</creatorcontrib><description>A connectivity based k -coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keeping the homology intact. Then a connectivity-based algorithm is proposed for discovering boundary cycles of non-triangular k -coverage holes. The algorithm consists of two parts, one part is 1-coverage hole detection and the other part is coverage degree reduction. In the 1-coverage hole detection part, boundary cycles of 1-coverage holes are found. In the coverage degree reduction part, an independent covering subset of nodes for the covered region is found and these nodes are set to dormant state to decrease the coverage degree of the target region by one. The k -coverage hole detection algorithm is an iterative process of the two parts. Computation complexity of the algorithm is analyzed and simulation results show that more than 95% of non-triangular k -coverage holes can be accurately detected by our algorithm.</description><identifier>ISSN: 1383-469X</identifier><identifier>EISSN: 1572-8153</identifier><identifier>DOI: 10.1007/s11036-019-01301-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Communications Engineering ; Complexity ; Computer Communication Networks ; Computer simulation ; Connectivity ; Degree reduction ; Deletion ; Electrical Engineering ; Engineering ; Homology ; IT in Business ; Iterative methods ; Network topologies ; Networks ; Nodes ; Remote sensors ; Wireless sensor networks</subject><ispartof>Mobile networks and applications, 2020-04, Vol.25 (2), p.783-793</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ae216a9c43c75a98c2b21234c8eec458504f227f5dcae16276413e604a6033df3</citedby><cites>FETCH-LOGICAL-c319t-ae216a9c43c75a98c2b21234c8eec458504f227f5dcae16276413e604a6033df3</cites><orcidid>0000-0002-8387-1754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11036-019-01301-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11036-019-01301-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yan, Feng</creatorcontrib><creatorcontrib>Ma, Wenyu</creatorcontrib><creatorcontrib>Shen, Fei</creatorcontrib><creatorcontrib>Xia, Weiwei</creatorcontrib><creatorcontrib>Shen, Lianfeng</creatorcontrib><title>Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks</title><title>Mobile networks and applications</title><addtitle>Mobile Netw Appl</addtitle><description>A connectivity based k -coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keeping the homology intact. Then a connectivity-based algorithm is proposed for discovering boundary cycles of non-triangular k -coverage holes. The algorithm consists of two parts, one part is 1-coverage hole detection and the other part is coverage degree reduction. In the 1-coverage hole detection part, boundary cycles of 1-coverage holes are found. In the coverage degree reduction part, an independent covering subset of nodes for the covered region is found and these nodes are set to dormant state to decrease the coverage degree of the target region by one. The k -coverage hole detection algorithm is an iterative process of the two parts. Computation complexity of the algorithm is analyzed and simulation results show that more than 95% of non-triangular k -coverage holes can be accurately detected by our algorithm.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Complexity</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Connectivity</subject><subject>Degree reduction</subject><subject>Deletion</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Homology</subject><subject>IT in Business</subject><subject>Iterative methods</subject><subject>Network topologies</subject><subject>Networks</subject><subject>Nodes</subject><subject>Remote sensors</subject><subject>Wireless sensor networks</subject><issn>1383-469X</issn><issn>1572-8153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTZ4_EqyhPAoUgULQLCzjDup0pa42GlR_p6UILFjMZpZnHtHOoScAj8HzrOLBMClYRyKfiQH1u2REehMsBy03O9vmUumTPF2SI5SWnDOtc7ViEzK0DTo23pbtx29cglndMnKsMXo5kgnYYX0GtsdERpaN_S1jrjClOgTNilE-oDtV4jLdEwOKrdKePK7x-Tl9ua5nLDp4919eTllXkLRMocCjCu8kj7Trsi9eBcgpPI5olc611xVQmSVnnmHYERmFEg0XDnDpZxVckzOht51DJ8bTK1dhE1s-pdWCCUh03lmekoMlI8hpYiVXcf6w8XOArc7Y3YwZntj9seY7fqQHEKph5s5xr_qf1Lf3dFuEA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yan, Feng</creator><creator>Ma, Wenyu</creator><creator>Shen, Fei</creator><creator>Xia, Weiwei</creator><creator>Shen, Lianfeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8387-1754</orcidid></search><sort><creationdate>20200401</creationdate><title>Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks</title><author>Yan, Feng ; Ma, Wenyu ; Shen, Fei ; Xia, Weiwei ; Shen, Lianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ae216a9c43c75a98c2b21234c8eec458504f227f5dcae16276413e604a6033df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Complexity</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Connectivity</topic><topic>Degree reduction</topic><topic>Deletion</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Homology</topic><topic>IT in Business</topic><topic>Iterative methods</topic><topic>Network topologies</topic><topic>Networks</topic><topic>Nodes</topic><topic>Remote sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Feng</creatorcontrib><creatorcontrib>Ma, Wenyu</creatorcontrib><creatorcontrib>Shen, Fei</creatorcontrib><creatorcontrib>Xia, Weiwei</creatorcontrib><creatorcontrib>Shen, Lianfeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Mobile networks and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Feng</au><au>Ma, Wenyu</au><au>Shen, Fei</au><au>Xia, Weiwei</au><au>Shen, Lianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks</atitle><jtitle>Mobile networks and applications</jtitle><stitle>Mobile Netw Appl</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>25</volume><issue>2</issue><spage>783</spage><epage>793</epage><pages>783-793</pages><issn>1383-469X</issn><eissn>1572-8153</eissn><abstract>A connectivity based k -coverage hole detection algorithm is proposed in this paper. We adopt Rips complex in homology theory to model a wireless sensor network (WSN). We firstly present a simplicial complex reduction algorithm to simplify the network topology by vertex and edge deletion, while keeping the homology intact. Then a connectivity-based algorithm is proposed for discovering boundary cycles of non-triangular k -coverage holes. The algorithm consists of two parts, one part is 1-coverage hole detection and the other part is coverage degree reduction. In the 1-coverage hole detection part, boundary cycles of 1-coverage holes are found. In the coverage degree reduction part, an independent covering subset of nodes for the covered region is found and these nodes are set to dormant state to decrease the coverage degree of the target region by one. The k -coverage hole detection algorithm is an iterative process of the two parts. Computation complexity of the algorithm is analyzed and simulation results show that more than 95% of non-triangular k -coverage holes can be accurately detected by our algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11036-019-01301-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8387-1754</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1383-469X
ispartof Mobile networks and applications, 2020-04, Vol.25 (2), p.783-793
issn 1383-469X
1572-8153
language eng
recordid cdi_proquest_journals_2243175876
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Communications Engineering
Complexity
Computer Communication Networks
Computer simulation
Connectivity
Degree reduction
Deletion
Electrical Engineering
Engineering
Homology
IT in Business
Iterative methods
Network topologies
Networks
Nodes
Remote sensors
Wireless sensor networks
title Connectivity Based k-Coverage Hole Detection in Wireless Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectivity%20Based%20k-Coverage%20Hole%20Detection%20in%20Wireless%20Sensor%20Networks&rft.jtitle=Mobile%20networks%20and%20applications&rft.au=Yan,%20Feng&rft.date=2020-04-01&rft.volume=25&rft.issue=2&rft.spage=783&rft.epage=793&rft.pages=783-793&rft.issn=1383-469X&rft.eissn=1572-8153&rft_id=info:doi/10.1007/s11036-019-01301-y&rft_dat=%3Cproquest_cross%3E2243175876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243175876&rft_id=info:pmid/&rfr_iscdi=true