Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing

This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of signal processing systems 2019-07, Vol.91 (7), p.759-771
Hauptverfasser: Lazcano, R., Madroñal, D., Fabelo, H., Ortega, S., Salvador, R., Callico, G. M., Juarez, E., Sanz, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 7
container_start_page 759
container_title Journal of signal processing systems
container_volume 91
creator Lazcano, R.
Madroñal, D.
Fabelo, H.
Ortega, S.
Salvador, R.
Callico, G. M.
Juarez, E.
Sanz, C.
description This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance.
doi_str_mv 10.1007/s11265-018-1380-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242865463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242865463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-35f3794f4187e514bb18b80bcbb25653c0ae3b5b19ea116f38288a51d651a8883</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gOpo7mWQyy6GoLVR0oTshJGmmTmknY5IKfXtTRnHl6v6dcy58CF0DvQVKq7sIUAhOKEgCTFJSn6AJ1KwmEoCf_vb5fI4uYtxQKmjFYYLem5Uekk6d77Fvse7xIrmQ5y-HX2YNTh5r_KT7g_XB4SbYjy45m_Z5aH3A88PgQhzyJugtXuz0OtuCty7Grl9forNWb6O7-qlT9PZw_zqbk-Xz42LWLIllvE6E8ZZVddmWICvHoTQGpJHUWGMKLjizVDtmuIHaaQDRMllIqTmsBActpWRTdDPmDsF_7l1MauP3oc8vVVGUhRS8FCyrYFTZ4GMMrlVD6HY6HBRQdYSoRogqU1JHiKrOnmL0xKzt1y78Jf9v-gYfDnOj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242865463</pqid></control><display><type>article</type><title>Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing</title><source>Springer Nature - Complete Springer Journals</source><creator>Lazcano, R. ; Madroñal, D. ; Fabelo, H. ; Ortega, S. ; Salvador, R. ; Callico, G. M. ; Juarez, E. ; Sanz, C.</creator><creatorcontrib>Lazcano, R. ; Madroñal, D. ; Fabelo, H. ; Ortega, S. ; Salvador, R. ; Callico, G. M. ; Juarez, E. ; Sanz, C.</creatorcontrib><description>This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-018-1380-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Algorithms ; Array processors ; Circuits and Systems ; Computer Imaging ; Computer memory ; Dependence ; Electrical Engineering ; Engineering ; Hyperspectral imaging ; Image processing ; Image Processing and Computer Vision ; Iterative methods ; Microprocessors ; Pattern Recognition ; Pattern Recognition and Graphics ; Real time ; Remote sensing ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Journal of signal processing systems, 2019-07, Vol.91 (7), p.759-771</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-35f3794f4187e514bb18b80bcbb25653c0ae3b5b19ea116f38288a51d651a8883</citedby><cites>FETCH-LOGICAL-c359t-35f3794f4187e514bb18b80bcbb25653c0ae3b5b19ea116f38288a51d651a8883</cites><orcidid>0000-0002-2645-6749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11265-018-1380-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11265-018-1380-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Lazcano, R.</creatorcontrib><creatorcontrib>Madroñal, D.</creatorcontrib><creatorcontrib>Fabelo, H.</creatorcontrib><creatorcontrib>Ortega, S.</creatorcontrib><creatorcontrib>Salvador, R.</creatorcontrib><creatorcontrib>Callico, G. M.</creatorcontrib><creatorcontrib>Juarez, E.</creatorcontrib><creatorcontrib>Sanz, C.</creatorcontrib><title>Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><description>This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Array processors</subject><subject>Circuits and Systems</subject><subject>Computer Imaging</subject><subject>Computer memory</subject><subject>Dependence</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Iterative methods</subject><subject>Microprocessors</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4C7gOpo7mWQyy6GoLVR0oTshJGmmTmknY5IKfXtTRnHl6v6dcy58CF0DvQVKq7sIUAhOKEgCTFJSn6AJ1KwmEoCf_vb5fI4uYtxQKmjFYYLem5Uekk6d77Fvse7xIrmQ5y-HX2YNTh5r_KT7g_XB4SbYjy45m_Z5aH3A88PgQhzyJugtXuz0OtuCty7Grl9forNWb6O7-qlT9PZw_zqbk-Xz42LWLIllvE6E8ZZVddmWICvHoTQGpJHUWGMKLjizVDtmuIHaaQDRMllIqTmsBActpWRTdDPmDsF_7l1MauP3oc8vVVGUhRS8FCyrYFTZ4GMMrlVD6HY6HBRQdYSoRogqU1JHiKrOnmL0xKzt1y78Jf9v-gYfDnOj</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Lazcano, R.</creator><creator>Madroñal, D.</creator><creator>Fabelo, H.</creator><creator>Ortega, S.</creator><creator>Salvador, R.</creator><creator>Callico, G. M.</creator><creator>Juarez, E.</creator><creator>Sanz, C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2645-6749</orcidid></search><sort><creationdate>20190715</creationdate><title>Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing</title><author>Lazcano, R. ; Madroñal, D. ; Fabelo, H. ; Ortega, S. ; Salvador, R. ; Callico, G. M. ; Juarez, E. ; Sanz, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-35f3794f4187e514bb18b80bcbb25653c0ae3b5b19ea116f38288a51d651a8883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Array processors</topic><topic>Circuits and Systems</topic><topic>Computer Imaging</topic><topic>Computer memory</topic><topic>Dependence</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Iterative methods</topic><topic>Microprocessors</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazcano, R.</creatorcontrib><creatorcontrib>Madroñal, D.</creatorcontrib><creatorcontrib>Fabelo, H.</creatorcontrib><creatorcontrib>Ortega, S.</creatorcontrib><creatorcontrib>Salvador, R.</creatorcontrib><creatorcontrib>Callico, G. M.</creatorcontrib><creatorcontrib>Juarez, E.</creatorcontrib><creatorcontrib>Sanz, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazcano, R.</au><au>Madroñal, D.</au><au>Fabelo, H.</au><au>Ortega, S.</au><au>Salvador, R.</au><au>Callico, G. M.</au><au>Juarez, E.</au><au>Sanz, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>91</volume><issue>7</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11265-018-1380-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2645-6749</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-8018
ispartof Journal of signal processing systems, 2019-07, Vol.91 (7), p.759-771
issn 1939-8018
1939-8115
language eng
recordid cdi_proquest_journals_2242865463
source Springer Nature - Complete Springer Journals
subjects Adaptation
Algorithms
Array processors
Circuits and Systems
Computer Imaging
Computer memory
Dependence
Electrical Engineering
Engineering
Hyperspectral imaging
Image processing
Image Processing and Computer Vision
Iterative methods
Microprocessors
Pattern Recognition
Pattern Recognition and Graphics
Real time
Remote sensing
Signal,Image and Speech Processing
Vision
title Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20of%20an%20Iterative%20PCA%20to%20a%20Manycore%20Architecture%20for%20Hyperspectral%20Image%20Processing&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Lazcano,%20R.&rft.date=2019-07-15&rft.volume=91&rft.issue=7&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-018-1380-9&rft_dat=%3Cproquest_cross%3E2242865463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242865463&rft_id=info:pmid/&rfr_iscdi=true