Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing
This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the in...
Gespeichert in:
Veröffentlicht in: | Journal of signal processing systems 2019-07, Vol.91 (7), p.759-771 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 771 |
---|---|
container_issue | 7 |
container_start_page | 759 |
container_title | Journal of signal processing systems |
container_volume | 91 |
creator | Lazcano, R. Madroñal, D. Fabelo, H. Ortega, S. Salvador, R. Callico, G. M. Juarez, E. Sanz, C. |
description | This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance. |
doi_str_mv | 10.1007/s11265-018-1380-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242865463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242865463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-35f3794f4187e514bb18b80bcbb25653c0ae3b5b19ea116f38288a51d651a8883</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gOpo7mWQyy6GoLVR0oTshJGmmTmknY5IKfXtTRnHl6v6dcy58CF0DvQVKq7sIUAhOKEgCTFJSn6AJ1KwmEoCf_vb5fI4uYtxQKmjFYYLem5Uekk6d77Fvse7xIrmQ5y-HX2YNTh5r_KT7g_XB4SbYjy45m_Z5aH3A88PgQhzyJugtXuz0OtuCty7Grl9forNWb6O7-qlT9PZw_zqbk-Xz42LWLIllvE6E8ZZVddmWICvHoTQGpJHUWGMKLjizVDtmuIHaaQDRMllIqTmsBActpWRTdDPmDsF_7l1MauP3oc8vVVGUhRS8FCyrYFTZ4GMMrlVD6HY6HBRQdYSoRogqU1JHiKrOnmL0xKzt1y78Jf9v-gYfDnOj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242865463</pqid></control><display><type>article</type><title>Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing</title><source>Springer Nature - Complete Springer Journals</source><creator>Lazcano, R. ; Madroñal, D. ; Fabelo, H. ; Ortega, S. ; Salvador, R. ; Callico, G. M. ; Juarez, E. ; Sanz, C.</creator><creatorcontrib>Lazcano, R. ; Madroñal, D. ; Fabelo, H. ; Ortega, S. ; Salvador, R. ; Callico, G. M. ; Juarez, E. ; Sanz, C.</creatorcontrib><description>This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance.</description><identifier>ISSN: 1939-8018</identifier><identifier>EISSN: 1939-8115</identifier><identifier>DOI: 10.1007/s11265-018-1380-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Algorithms ; Array processors ; Circuits and Systems ; Computer Imaging ; Computer memory ; Dependence ; Electrical Engineering ; Engineering ; Hyperspectral imaging ; Image processing ; Image Processing and Computer Vision ; Iterative methods ; Microprocessors ; Pattern Recognition ; Pattern Recognition and Graphics ; Real time ; Remote sensing ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Journal of signal processing systems, 2019-07, Vol.91 (7), p.759-771</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-35f3794f4187e514bb18b80bcbb25653c0ae3b5b19ea116f38288a51d651a8883</citedby><cites>FETCH-LOGICAL-c359t-35f3794f4187e514bb18b80bcbb25653c0ae3b5b19ea116f38288a51d651a8883</cites><orcidid>0000-0002-2645-6749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11265-018-1380-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11265-018-1380-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Lazcano, R.</creatorcontrib><creatorcontrib>Madroñal, D.</creatorcontrib><creatorcontrib>Fabelo, H.</creatorcontrib><creatorcontrib>Ortega, S.</creatorcontrib><creatorcontrib>Salvador, R.</creatorcontrib><creatorcontrib>Callico, G. M.</creatorcontrib><creatorcontrib>Juarez, E.</creatorcontrib><creatorcontrib>Sanz, C.</creatorcontrib><title>Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing</title><title>Journal of signal processing systems</title><addtitle>J Sign Process Syst</addtitle><description>This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Array processors</subject><subject>Circuits and Systems</subject><subject>Computer Imaging</subject><subject>Computer memory</subject><subject>Dependence</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Iterative methods</subject><subject>Microprocessors</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1939-8018</issn><issn>1939-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4C7gOpo7mWQyy6GoLVR0oTshJGmmTmknY5IKfXtTRnHl6v6dcy58CF0DvQVKq7sIUAhOKEgCTFJSn6AJ1KwmEoCf_vb5fI4uYtxQKmjFYYLem5Uekk6d77Fvse7xIrmQ5y-HX2YNTh5r_KT7g_XB4SbYjy45m_Z5aH3A88PgQhzyJugtXuz0OtuCty7Grl9forNWb6O7-qlT9PZw_zqbk-Xz42LWLIllvE6E8ZZVddmWICvHoTQGpJHUWGMKLjizVDtmuIHaaQDRMllIqTmsBActpWRTdDPmDsF_7l1MauP3oc8vVVGUhRS8FCyrYFTZ4GMMrlVD6HY6HBRQdYSoRogqU1JHiKrOnmL0xKzt1y78Jf9v-gYfDnOj</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Lazcano, R.</creator><creator>Madroñal, D.</creator><creator>Fabelo, H.</creator><creator>Ortega, S.</creator><creator>Salvador, R.</creator><creator>Callico, G. M.</creator><creator>Juarez, E.</creator><creator>Sanz, C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2645-6749</orcidid></search><sort><creationdate>20190715</creationdate><title>Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing</title><author>Lazcano, R. ; Madroñal, D. ; Fabelo, H. ; Ortega, S. ; Salvador, R. ; Callico, G. M. ; Juarez, E. ; Sanz, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-35f3794f4187e514bb18b80bcbb25653c0ae3b5b19ea116f38288a51d651a8883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Array processors</topic><topic>Circuits and Systems</topic><topic>Computer Imaging</topic><topic>Computer memory</topic><topic>Dependence</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Iterative methods</topic><topic>Microprocessors</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazcano, R.</creatorcontrib><creatorcontrib>Madroñal, D.</creatorcontrib><creatorcontrib>Fabelo, H.</creatorcontrib><creatorcontrib>Ortega, S.</creatorcontrib><creatorcontrib>Salvador, R.</creatorcontrib><creatorcontrib>Callico, G. M.</creatorcontrib><creatorcontrib>Juarez, E.</creatorcontrib><creatorcontrib>Sanz, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of signal processing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazcano, R.</au><au>Madroñal, D.</au><au>Fabelo, H.</au><au>Ortega, S.</au><au>Salvador, R.</au><au>Callico, G. M.</au><au>Juarez, E.</au><au>Sanz, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing</atitle><jtitle>Journal of signal processing systems</jtitle><stitle>J Sign Process Syst</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>91</volume><issue>7</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>1939-8018</issn><eissn>1939-8115</eissn><abstract>This paper presents a study of the adaptation of a Non-Linear Iterative Partial Least Squares (NIPALS) algorithm applied to Hyperspectral Imaging to a Massively Parallel Processor Array manycore architecture, which assembles 256 cores distributed over 16 clusters. This work aims at optimizing the internal communications of the platform to achieve real-time processing of large data volumes with limited computational resources and memory bandwidth. As hyperspectral images are composed of extensive volumes of spectral information, real-time requirements, which are upper-bounded by the image capture rate of the hyperspectral sensor, are a challenging objective. To address this issue, the image size is usually reduced prior to the processing phase, which is itself a computationally intensive task. Consequently, this paper proposes an analysis of the intrinsic parallelism and the data dependency within the NIPALS algorithm and its subsequent implementation on a manycore architecture. Furthermore, this implementation has been validated against three hyperspectral images extracted from both remote sensing and medical datasets. As a result, an average speedup of 17× has been achieved when compared to the sequential version. Finally, this approach has been compared with other state-of-the-art implementations, outperforming them in terms of performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11265-018-1380-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2645-6749</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-8018 |
ispartof | Journal of signal processing systems, 2019-07, Vol.91 (7), p.759-771 |
issn | 1939-8018 1939-8115 |
language | eng |
recordid | cdi_proquest_journals_2242865463 |
source | Springer Nature - Complete Springer Journals |
subjects | Adaptation Algorithms Array processors Circuits and Systems Computer Imaging Computer memory Dependence Electrical Engineering Engineering Hyperspectral imaging Image processing Image Processing and Computer Vision Iterative methods Microprocessors Pattern Recognition Pattern Recognition and Graphics Real time Remote sensing Signal,Image and Speech Processing Vision |
title | Adaptation of an Iterative PCA to a Manycore Architecture for Hyperspectral Image Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20of%20an%20Iterative%20PCA%20to%20a%20Manycore%20Architecture%20for%20Hyperspectral%20Image%20Processing&rft.jtitle=Journal%20of%20signal%20processing%20systems&rft.au=Lazcano,%20R.&rft.date=2019-07-15&rft.volume=91&rft.issue=7&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=1939-8018&rft.eissn=1939-8115&rft_id=info:doi/10.1007/s11265-018-1380-9&rft_dat=%3Cproquest_cross%3E2242865463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242865463&rft_id=info:pmid/&rfr_iscdi=true |