Solution of a Contact Elasticity Problem with a Rigid Inclusion
An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2019-04, Vol.59 (4), p.659-666 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 666 |
---|---|
container_issue | 4 |
container_start_page | 659 |
container_title | Computational mathematics and mathematical physics |
container_volume | 59 |
creator | Namm, R. V. Tsoy, G. I. |
description | An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented. |
doi_str_mv | 10.1134/S0965542519040134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242861638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242861638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bd2c0307e1653f7e70aae327e50fab4f75a513191d71e14bd4906e19ccd5e60c3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19WcfLW9EhlzDgaK0-uSpunM6JqZpMj-vSkTvBCvDpzzPO-BF6FrILcAjN-tSSmF4FRASThJmxM0ASFEJqWkp2gynrPxfo4uQtgSArIs2ATdr103ROt67Fqs8Mz1UemI550K0WobD_jFu7ozO_xl40ciXu3GNnjZ624ISbtEZ63qgrn6mVP0_jh_mz1lq-fFcvawyjQDGbO6oZowkhuQgrW5yYlShtHcCNKqmre5UAIYlNDkYIDXDS-JNFBq3QgjiWZTdHPM3Xv3OZgQq60bfJ9eVpRyWkiQrEgUHCntXQjetNXe253yhwpINfZU_ekpOfTohMT2G-N_k_-XvgGAWGhW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242861638</pqid></control><display><type>article</type><title>Solution of a Contact Elasticity Problem with a Rigid Inclusion</title><source>Springer Nature - Complete Springer Journals</source><creator>Namm, R. V. ; Tsoy, G. I.</creator><creatorcontrib>Namm, R. V. ; Tsoy, G. I.</creatorcontrib><description>An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542519040134</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Elastic bodies ; Elasticity ; Finite element method ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Uzawa's algorithm</subject><ispartof>Computational mathematics and mathematical physics, 2019-04, Vol.59 (4), p.659-666</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bd2c0307e1653f7e70aae327e50fab4f75a513191d71e14bd4906e19ccd5e60c3</citedby><cites>FETCH-LOGICAL-c316t-bd2c0307e1653f7e70aae327e50fab4f75a513191d71e14bd4906e19ccd5e60c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542519040134$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542519040134$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Namm, R. V.</creatorcontrib><creatorcontrib>Tsoy, G. I.</creatorcontrib><title>Solution of a Contact Elasticity Problem with a Rigid Inclusion</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Elastic bodies</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Uzawa's algorithm</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19WcfLW9EhlzDgaK0-uSpunM6JqZpMj-vSkTvBCvDpzzPO-BF6FrILcAjN-tSSmF4FRASThJmxM0ASFEJqWkp2gynrPxfo4uQtgSArIs2ATdr103ROt67Fqs8Mz1UemI550K0WobD_jFu7ozO_xl40ciXu3GNnjZ624ISbtEZ63qgrn6mVP0_jh_mz1lq-fFcvawyjQDGbO6oZowkhuQgrW5yYlShtHcCNKqmre5UAIYlNDkYIDXDS-JNFBq3QgjiWZTdHPM3Xv3OZgQq60bfJ9eVpRyWkiQrEgUHCntXQjetNXe253yhwpINfZU_ekpOfTohMT2G-N_k_-XvgGAWGhW</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Namm, R. V.</creator><creator>Tsoy, G. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190401</creationdate><title>Solution of a Contact Elasticity Problem with a Rigid Inclusion</title><author>Namm, R. V. ; Tsoy, G. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bd2c0307e1653f7e70aae327e50fab4f75a513191d71e14bd4906e19ccd5e60c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Elastic bodies</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Uzawa's algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namm, R. V.</creatorcontrib><creatorcontrib>Tsoy, G. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namm, R. V.</au><au>Tsoy, G. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of a Contact Elasticity Problem with a Rigid Inclusion</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>59</volume><issue>4</issue><spage>659</spage><epage>666</epage><pages>659-666</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542519040134</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2019-04, Vol.59 (4), p.659-666 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2242861638 |
source | Springer Nature - Complete Springer Journals |
subjects | Computational Mathematics and Numerical Analysis Elastic bodies Elasticity Finite element method Mathematics Mathematics and Statistics Numerical methods Uzawa's algorithm |
title | Solution of a Contact Elasticity Problem with a Rigid Inclusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20a%20Contact%20Elasticity%20Problem%20with%20a%20Rigid%20Inclusion&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Namm,%20R.%20V.&rft.date=2019-04-01&rft.volume=59&rft.issue=4&rft.spage=659&rft.epage=666&rft.pages=659-666&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542519040134&rft_dat=%3Cproquest_cross%3E2242861638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242861638&rft_id=info:pmid/&rfr_iscdi=true |