Solution of a Contact Elasticity Problem with a Rigid Inclusion

An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2019-04, Vol.59 (4), p.659-666
Hauptverfasser: Namm, R. V., Tsoy, G. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 666
container_issue 4
container_start_page 659
container_title Computational mathematics and mathematical physics
container_volume 59
creator Namm, R. V.
Tsoy, G. I.
description An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented.
doi_str_mv 10.1134/S0965542519040134
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242861638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2242861638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bd2c0307e1653f7e70aae327e50fab4f75a513191d71e14bd4906e19ccd5e60c3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19WcfLW9EhlzDgaK0-uSpunM6JqZpMj-vSkTvBCvDpzzPO-BF6FrILcAjN-tSSmF4FRASThJmxM0ASFEJqWkp2gynrPxfo4uQtgSArIs2ATdr103ROt67Fqs8Mz1UemI550K0WobD_jFu7ozO_xl40ciXu3GNnjZ624ISbtEZ63qgrn6mVP0_jh_mz1lq-fFcvawyjQDGbO6oZowkhuQgrW5yYlShtHcCNKqmre5UAIYlNDkYIDXDS-JNFBq3QgjiWZTdHPM3Xv3OZgQq60bfJ9eVpRyWkiQrEgUHCntXQjetNXe253yhwpINfZU_ekpOfTohMT2G-N_k_-XvgGAWGhW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242861638</pqid></control><display><type>article</type><title>Solution of a Contact Elasticity Problem with a Rigid Inclusion</title><source>Springer Nature - Complete Springer Journals</source><creator>Namm, R. V. ; Tsoy, G. I.</creator><creatorcontrib>Namm, R. V. ; Tsoy, G. I.</creatorcontrib><description>An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542519040134</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Elastic bodies ; Elasticity ; Finite element method ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Uzawa's algorithm</subject><ispartof>Computational mathematics and mathematical physics, 2019-04, Vol.59 (4), p.659-666</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bd2c0307e1653f7e70aae327e50fab4f75a513191d71e14bd4906e19ccd5e60c3</citedby><cites>FETCH-LOGICAL-c316t-bd2c0307e1653f7e70aae327e50fab4f75a513191d71e14bd4906e19ccd5e60c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542519040134$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542519040134$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Namm, R. V.</creatorcontrib><creatorcontrib>Tsoy, G. I.</creatorcontrib><title>Solution of a Contact Elasticity Problem with a Rigid Inclusion</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Elastic bodies</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Uzawa's algorithm</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19WcfLW9EhlzDgaK0-uSpunM6JqZpMj-vSkTvBCvDpzzPO-BF6FrILcAjN-tSSmF4FRASThJmxM0ASFEJqWkp2gynrPxfo4uQtgSArIs2ATdr103ROt67Fqs8Mz1UemI550K0WobD_jFu7ozO_xl40ciXu3GNnjZ624ISbtEZ63qgrn6mVP0_jh_mz1lq-fFcvawyjQDGbO6oZowkhuQgrW5yYlShtHcCNKqmre5UAIYlNDkYIDXDS-JNFBq3QgjiWZTdHPM3Xv3OZgQq60bfJ9eVpRyWkiQrEgUHCntXQjetNXe253yhwpINfZU_ekpOfTohMT2G-N_k_-XvgGAWGhW</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Namm, R. V.</creator><creator>Tsoy, G. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190401</creationdate><title>Solution of a Contact Elasticity Problem with a Rigid Inclusion</title><author>Namm, R. V. ; Tsoy, G. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bd2c0307e1653f7e70aae327e50fab4f75a513191d71e14bd4906e19ccd5e60c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Elastic bodies</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Uzawa's algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namm, R. V.</creatorcontrib><creatorcontrib>Tsoy, G. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namm, R. V.</au><au>Tsoy, G. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of a Contact Elasticity Problem with a Rigid Inclusion</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>59</volume><issue>4</issue><spage>659</spage><epage>666</epage><pages>659-666</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>An equilibrium problem for an elastic body containing a rigid inclusion is solved. There is a delamination crack on a portion of the interface between the inclusion and the elastic body. Mutual nonpenetration conditions are set on the crack faces. According to the solution method, the problem with a rigid inclusion can be treated as a limit one for a family of problems with a crack. A numerical method relying on a modified duality scheme and the Uzawa algorithm is proposed for solving the problem. FEM-based numerical results are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542519040134</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2019-04, Vol.59 (4), p.659-666
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2242861638
source Springer Nature - Complete Springer Journals
subjects Computational Mathematics and Numerical Analysis
Elastic bodies
Elasticity
Finite element method
Mathematics
Mathematics and Statistics
Numerical methods
Uzawa's algorithm
title Solution of a Contact Elasticity Problem with a Rigid Inclusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20a%20Contact%20Elasticity%20Problem%20with%20a%20Rigid%20Inclusion&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Namm,%20R.%20V.&rft.date=2019-04-01&rft.volume=59&rft.issue=4&rft.spage=659&rft.epage=666&rft.pages=659-666&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542519040134&rft_dat=%3Cproquest_cross%3E2242861638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242861638&rft_id=info:pmid/&rfr_iscdi=true