Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube

•SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2019-05, Vol.154, p.380-392
Hauptverfasser: Zhang, Yuandong, Peng, Minjun, Xia, Genglei, Cong, Tenglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue
container_start_page 380
container_title Applied thermal engineering
container_volume 154
creator Zhang, Yuandong
Peng, Minjun
Xia, Genglei
Cong, Tenglong
description •SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow changes the local heat transfer mechanisms profoundly. The nuclear reactor system with supercritical carbon dioxide (S-CO2) as working fluid has good prospects in generation IV reactors. The printed circuit heat exchanger (PCHE) is a promising candidate for recuperator in S-CO2 Brayton cycle. However, the dramatic variations of S-CO2 thermophysical properties and the geometrical factors of PCHE microchannels make S-CO2 heat transfer mechanisms complex. Grasping the S-CO2 heat transfer mechanisms provides references and theoretical supports for the design of PCHE. In this paper, localized heat transfer characteristics of S-CO2 heated in a horizontal semicircular microtube were investigated numerically. The mathematical and physical models in simulating the heat transfer characteristics of supercritical fluid were validated by experimental data. The effects of pressure, mass flux, heat flux and tube geometry on S-CO2 local heat transfer characteristics near the pseudocritical temperature were studied. The results demonstrate that the dramatic variations of thermophysical properties in pseudocritical region have significant effects on heat transfer mechanisms. The distributions of specific heat (Cp) dominate the heat transfer characteristics when the effects of buoyancy are neglectable. In low mass flux or high heat flux cases, the buoyancy effects strongly influence the heat transfer mechanisms by changing the sectional parameters distributions and intensifying the secondary flow, resulting in deterioration of localized heat transfer capacity.
doi_str_mv 10.1016/j.applthermaleng.2019.03.082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242776269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118344132</els_id><sourcerecordid>2242776269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1cbc235e21ea6aa2af997a06487b60e9d7206d530a305ae26a292a58525da77d3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhoMoWKv_IaDXxP3I7ibgRYpVQexBPS_TzaTdkmbr7qagv94t9eJNGJhheJ_5eLPshpKSEipvNyXsdn1co99Cj8OqZIQ2JeElqdlJNqG14oWQRJ6mmoumqDil59lFCBtCKKtVNcn613GL3hroczvsMUS7gmjdkKfo3aG9Roh59DCEDn1u1uDBxIQkqQm56_K3YrZgic7XzttvN8QEBdxaY70Ze_B5Kr2L4xIvs7MO-oBXv3mafcwf3mdPxcvi8Xl2_1IYLupYULM0jAtkFEECMOiaRgGRVa2WkmDTKkZkKzgBTgQgk8AaBqIWTLSgVMun2fVx7s67zzE9pTdu9ENaqRmrmFKSySap7o6qdF0IHju983YL_ktTog_-6o3-668--KsJ18nfhM-POKZP9ha9DsbiYLC1Hk3UrbP_G_QDkgeOiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242776269</pqid></control><display><type>article</type><title>Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Yuandong ; Peng, Minjun ; Xia, Genglei ; Cong, Tenglong</creator><creatorcontrib>Zhang, Yuandong ; Peng, Minjun ; Xia, Genglei ; Cong, Tenglong</creatorcontrib><description>•SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow changes the local heat transfer mechanisms profoundly. The nuclear reactor system with supercritical carbon dioxide (S-CO2) as working fluid has good prospects in generation IV reactors. The printed circuit heat exchanger (PCHE) is a promising candidate for recuperator in S-CO2 Brayton cycle. However, the dramatic variations of S-CO2 thermophysical properties and the geometrical factors of PCHE microchannels make S-CO2 heat transfer mechanisms complex. Grasping the S-CO2 heat transfer mechanisms provides references and theoretical supports for the design of PCHE. In this paper, localized heat transfer characteristics of S-CO2 heated in a horizontal semicircular microtube were investigated numerically. The mathematical and physical models in simulating the heat transfer characteristics of supercritical fluid were validated by experimental data. The effects of pressure, mass flux, heat flux and tube geometry on S-CO2 local heat transfer characteristics near the pseudocritical temperature were studied. The results demonstrate that the dramatic variations of thermophysical properties in pseudocritical region have significant effects on heat transfer mechanisms. The distributions of specific heat (Cp) dominate the heat transfer characteristics when the effects of buoyancy are neglectable. In low mass flux or high heat flux cases, the buoyancy effects strongly influence the heat transfer mechanisms by changing the sectional parameters distributions and intensifying the secondary flow, resulting in deterioration of localized heat transfer capacity.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.03.082</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Brayton cycle ; Buoyancy ; Carbon dioxide ; Computer simulation ; Heat exchangers ; Heat flux ; Heat transfer ; Localized heat transfer characteristics ; Microchannels ; Nuclear reactors ; Numerical analysis ; Pressure effects ; Regenerators ; Secondary flow ; Semicircular microtube ; Supercritical CO2 ; Supercritical fluids ; Thermophysical properties ; Working fluids</subject><ispartof>Applied thermal engineering, 2019-05, Vol.154, p.380-392</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-1cbc235e21ea6aa2af997a06487b60e9d7206d530a305ae26a292a58525da77d3</citedby><cites>FETCH-LOGICAL-c358t-1cbc235e21ea6aa2af997a06487b60e9d7206d530a305ae26a292a58525da77d3</cites><orcidid>0000-0002-4333-0283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2019.03.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Zhang, Yuandong</creatorcontrib><creatorcontrib>Peng, Minjun</creatorcontrib><creatorcontrib>Xia, Genglei</creatorcontrib><creatorcontrib>Cong, Tenglong</creatorcontrib><title>Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube</title><title>Applied thermal engineering</title><description>•SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow changes the local heat transfer mechanisms profoundly. The nuclear reactor system with supercritical carbon dioxide (S-CO2) as working fluid has good prospects in generation IV reactors. The printed circuit heat exchanger (PCHE) is a promising candidate for recuperator in S-CO2 Brayton cycle. However, the dramatic variations of S-CO2 thermophysical properties and the geometrical factors of PCHE microchannels make S-CO2 heat transfer mechanisms complex. Grasping the S-CO2 heat transfer mechanisms provides references and theoretical supports for the design of PCHE. In this paper, localized heat transfer characteristics of S-CO2 heated in a horizontal semicircular microtube were investigated numerically. The mathematical and physical models in simulating the heat transfer characteristics of supercritical fluid were validated by experimental data. The effects of pressure, mass flux, heat flux and tube geometry on S-CO2 local heat transfer characteristics near the pseudocritical temperature were studied. The results demonstrate that the dramatic variations of thermophysical properties in pseudocritical region have significant effects on heat transfer mechanisms. The distributions of specific heat (Cp) dominate the heat transfer characteristics when the effects of buoyancy are neglectable. In low mass flux or high heat flux cases, the buoyancy effects strongly influence the heat transfer mechanisms by changing the sectional parameters distributions and intensifying the secondary flow, resulting in deterioration of localized heat transfer capacity.</description><subject>Brayton cycle</subject><subject>Buoyancy</subject><subject>Carbon dioxide</subject><subject>Computer simulation</subject><subject>Heat exchangers</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Localized heat transfer characteristics</subject><subject>Microchannels</subject><subject>Nuclear reactors</subject><subject>Numerical analysis</subject><subject>Pressure effects</subject><subject>Regenerators</subject><subject>Secondary flow</subject><subject>Semicircular microtube</subject><subject>Supercritical CO2</subject><subject>Supercritical fluids</subject><subject>Thermophysical properties</subject><subject>Working fluids</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhoMoWKv_IaDXxP3I7ibgRYpVQexBPS_TzaTdkmbr7qagv94t9eJNGJhheJ_5eLPshpKSEipvNyXsdn1co99Cj8OqZIQ2JeElqdlJNqG14oWQRJ6mmoumqDil59lFCBtCKKtVNcn613GL3hroczvsMUS7gmjdkKfo3aG9Roh59DCEDn1u1uDBxIQkqQm56_K3YrZgic7XzttvN8QEBdxaY70Ze_B5Kr2L4xIvs7MO-oBXv3mafcwf3mdPxcvi8Xl2_1IYLupYULM0jAtkFEECMOiaRgGRVa2WkmDTKkZkKzgBTgQgk8AaBqIWTLSgVMun2fVx7s67zzE9pTdu9ENaqRmrmFKSySap7o6qdF0IHju983YL_ktTog_-6o3-668--KsJ18nfhM-POKZP9ha9DsbiYLC1Hk3UrbP_G_QDkgeOiQ</recordid><startdate>20190525</startdate><enddate>20190525</enddate><creator>Zhang, Yuandong</creator><creator>Peng, Minjun</creator><creator>Xia, Genglei</creator><creator>Cong, Tenglong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4333-0283</orcidid></search><sort><creationdate>20190525</creationdate><title>Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube</title><author>Zhang, Yuandong ; Peng, Minjun ; Xia, Genglei ; Cong, Tenglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1cbc235e21ea6aa2af997a06487b60e9d7206d530a305ae26a292a58525da77d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brayton cycle</topic><topic>Buoyancy</topic><topic>Carbon dioxide</topic><topic>Computer simulation</topic><topic>Heat exchangers</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Localized heat transfer characteristics</topic><topic>Microchannels</topic><topic>Nuclear reactors</topic><topic>Numerical analysis</topic><topic>Pressure effects</topic><topic>Regenerators</topic><topic>Secondary flow</topic><topic>Semicircular microtube</topic><topic>Supercritical CO2</topic><topic>Supercritical fluids</topic><topic>Thermophysical properties</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuandong</creatorcontrib><creatorcontrib>Peng, Minjun</creatorcontrib><creatorcontrib>Xia, Genglei</creatorcontrib><creatorcontrib>Cong, Tenglong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuandong</au><au>Peng, Minjun</au><au>Xia, Genglei</au><au>Cong, Tenglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-05-25</date><risdate>2019</risdate><volume>154</volume><spage>380</spage><epage>392</epage><pages>380-392</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow changes the local heat transfer mechanisms profoundly. The nuclear reactor system with supercritical carbon dioxide (S-CO2) as working fluid has good prospects in generation IV reactors. The printed circuit heat exchanger (PCHE) is a promising candidate for recuperator in S-CO2 Brayton cycle. However, the dramatic variations of S-CO2 thermophysical properties and the geometrical factors of PCHE microchannels make S-CO2 heat transfer mechanisms complex. Grasping the S-CO2 heat transfer mechanisms provides references and theoretical supports for the design of PCHE. In this paper, localized heat transfer characteristics of S-CO2 heated in a horizontal semicircular microtube were investigated numerically. The mathematical and physical models in simulating the heat transfer characteristics of supercritical fluid were validated by experimental data. The effects of pressure, mass flux, heat flux and tube geometry on S-CO2 local heat transfer characteristics near the pseudocritical temperature were studied. The results demonstrate that the dramatic variations of thermophysical properties in pseudocritical region have significant effects on heat transfer mechanisms. The distributions of specific heat (Cp) dominate the heat transfer characteristics when the effects of buoyancy are neglectable. In low mass flux or high heat flux cases, the buoyancy effects strongly influence the heat transfer mechanisms by changing the sectional parameters distributions and intensifying the secondary flow, resulting in deterioration of localized heat transfer capacity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.03.082</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4333-0283</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2019-05, Vol.154, p.380-392
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2242776269
source Elsevier ScienceDirect Journals
subjects Brayton cycle
Buoyancy
Carbon dioxide
Computer simulation
Heat exchangers
Heat flux
Heat transfer
Localized heat transfer characteristics
Microchannels
Nuclear reactors
Numerical analysis
Pressure effects
Regenerators
Secondary flow
Semicircular microtube
Supercritical CO2
Supercritical fluids
Thermophysical properties
Working fluids
title Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20on%20local%20heat%20transfer%20characteristics%20of%20S-CO2%20in%20horizontal%20semicircular%20microtube&rft.jtitle=Applied%20thermal%20engineering&rft.au=Zhang,%20Yuandong&rft.date=2019-05-25&rft.volume=154&rft.spage=380&rft.epage=392&rft.pages=380-392&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.03.082&rft_dat=%3Cproquest_cross%3E2242776269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242776269&rft_id=info:pmid/&rft_els_id=S1359431118344132&rfr_iscdi=true