Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube
•SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2019-05, Vol.154, p.380-392 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 392 |
---|---|
container_issue | |
container_start_page | 380 |
container_title | Applied thermal engineering |
container_volume | 154 |
creator | Zhang, Yuandong Peng, Minjun Xia, Genglei Cong, Tenglong |
description | •SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow changes the local heat transfer mechanisms profoundly.
The nuclear reactor system with supercritical carbon dioxide (S-CO2) as working fluid has good prospects in generation IV reactors. The printed circuit heat exchanger (PCHE) is a promising candidate for recuperator in S-CO2 Brayton cycle. However, the dramatic variations of S-CO2 thermophysical properties and the geometrical factors of PCHE microchannels make S-CO2 heat transfer mechanisms complex. Grasping the S-CO2 heat transfer mechanisms provides references and theoretical supports for the design of PCHE. In this paper, localized heat transfer characteristics of S-CO2 heated in a horizontal semicircular microtube were investigated numerically. The mathematical and physical models in simulating the heat transfer characteristics of supercritical fluid were validated by experimental data. The effects of pressure, mass flux, heat flux and tube geometry on S-CO2 local heat transfer characteristics near the pseudocritical temperature were studied. The results demonstrate that the dramatic variations of thermophysical properties in pseudocritical region have significant effects on heat transfer mechanisms. The distributions of specific heat (Cp) dominate the heat transfer characteristics when the effects of buoyancy are neglectable. In low mass flux or high heat flux cases, the buoyancy effects strongly influence the heat transfer mechanisms by changing the sectional parameters distributions and intensifying the secondary flow, resulting in deterioration of localized heat transfer capacity. |
doi_str_mv | 10.1016/j.applthermaleng.2019.03.082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242776269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118344132</els_id><sourcerecordid>2242776269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1cbc235e21ea6aa2af997a06487b60e9d7206d530a305ae26a292a58525da77d3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhoMoWKv_IaDXxP3I7ibgRYpVQexBPS_TzaTdkmbr7qagv94t9eJNGJhheJ_5eLPshpKSEipvNyXsdn1co99Cj8OqZIQ2JeElqdlJNqG14oWQRJ6mmoumqDil59lFCBtCKKtVNcn613GL3hroczvsMUS7gmjdkKfo3aG9Roh59DCEDn1u1uDBxIQkqQm56_K3YrZgic7XzttvN8QEBdxaY70Ze_B5Kr2L4xIvs7MO-oBXv3mafcwf3mdPxcvi8Xl2_1IYLupYULM0jAtkFEECMOiaRgGRVa2WkmDTKkZkKzgBTgQgk8AaBqIWTLSgVMun2fVx7s67zzE9pTdu9ENaqRmrmFKSySap7o6qdF0IHju983YL_ktTog_-6o3-668--KsJ18nfhM-POKZP9ha9DsbiYLC1Hk3UrbP_G_QDkgeOiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242776269</pqid></control><display><type>article</type><title>Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Yuandong ; Peng, Minjun ; Xia, Genglei ; Cong, Tenglong</creator><creatorcontrib>Zhang, Yuandong ; Peng, Minjun ; Xia, Genglei ; Cong, Tenglong</creatorcontrib><description>•SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow changes the local heat transfer mechanisms profoundly.
The nuclear reactor system with supercritical carbon dioxide (S-CO2) as working fluid has good prospects in generation IV reactors. The printed circuit heat exchanger (PCHE) is a promising candidate for recuperator in S-CO2 Brayton cycle. However, the dramatic variations of S-CO2 thermophysical properties and the geometrical factors of PCHE microchannels make S-CO2 heat transfer mechanisms complex. Grasping the S-CO2 heat transfer mechanisms provides references and theoretical supports for the design of PCHE. In this paper, localized heat transfer characteristics of S-CO2 heated in a horizontal semicircular microtube were investigated numerically. The mathematical and physical models in simulating the heat transfer characteristics of supercritical fluid were validated by experimental data. The effects of pressure, mass flux, heat flux and tube geometry on S-CO2 local heat transfer characteristics near the pseudocritical temperature were studied. The results demonstrate that the dramatic variations of thermophysical properties in pseudocritical region have significant effects on heat transfer mechanisms. The distributions of specific heat (Cp) dominate the heat transfer characteristics when the effects of buoyancy are neglectable. In low mass flux or high heat flux cases, the buoyancy effects strongly influence the heat transfer mechanisms by changing the sectional parameters distributions and intensifying the secondary flow, resulting in deterioration of localized heat transfer capacity.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.03.082</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Brayton cycle ; Buoyancy ; Carbon dioxide ; Computer simulation ; Heat exchangers ; Heat flux ; Heat transfer ; Localized heat transfer characteristics ; Microchannels ; Nuclear reactors ; Numerical analysis ; Pressure effects ; Regenerators ; Secondary flow ; Semicircular microtube ; Supercritical CO2 ; Supercritical fluids ; Thermophysical properties ; Working fluids</subject><ispartof>Applied thermal engineering, 2019-05, Vol.154, p.380-392</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-1cbc235e21ea6aa2af997a06487b60e9d7206d530a305ae26a292a58525da77d3</citedby><cites>FETCH-LOGICAL-c358t-1cbc235e21ea6aa2af997a06487b60e9d7206d530a305ae26a292a58525da77d3</cites><orcidid>0000-0002-4333-0283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2019.03.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Zhang, Yuandong</creatorcontrib><creatorcontrib>Peng, Minjun</creatorcontrib><creatorcontrib>Xia, Genglei</creatorcontrib><creatorcontrib>Cong, Tenglong</creatorcontrib><title>Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube</title><title>Applied thermal engineering</title><description>•SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow changes the local heat transfer mechanisms profoundly.
The nuclear reactor system with supercritical carbon dioxide (S-CO2) as working fluid has good prospects in generation IV reactors. The printed circuit heat exchanger (PCHE) is a promising candidate for recuperator in S-CO2 Brayton cycle. However, the dramatic variations of S-CO2 thermophysical properties and the geometrical factors of PCHE microchannels make S-CO2 heat transfer mechanisms complex. Grasping the S-CO2 heat transfer mechanisms provides references and theoretical supports for the design of PCHE. In this paper, localized heat transfer characteristics of S-CO2 heated in a horizontal semicircular microtube were investigated numerically. The mathematical and physical models in simulating the heat transfer characteristics of supercritical fluid were validated by experimental data. The effects of pressure, mass flux, heat flux and tube geometry on S-CO2 local heat transfer characteristics near the pseudocritical temperature were studied. The results demonstrate that the dramatic variations of thermophysical properties in pseudocritical region have significant effects on heat transfer mechanisms. The distributions of specific heat (Cp) dominate the heat transfer characteristics when the effects of buoyancy are neglectable. In low mass flux or high heat flux cases, the buoyancy effects strongly influence the heat transfer mechanisms by changing the sectional parameters distributions and intensifying the secondary flow, resulting in deterioration of localized heat transfer capacity.</description><subject>Brayton cycle</subject><subject>Buoyancy</subject><subject>Carbon dioxide</subject><subject>Computer simulation</subject><subject>Heat exchangers</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Localized heat transfer characteristics</subject><subject>Microchannels</subject><subject>Nuclear reactors</subject><subject>Numerical analysis</subject><subject>Pressure effects</subject><subject>Regenerators</subject><subject>Secondary flow</subject><subject>Semicircular microtube</subject><subject>Supercritical CO2</subject><subject>Supercritical fluids</subject><subject>Thermophysical properties</subject><subject>Working fluids</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhoMoWKv_IaDXxP3I7ibgRYpVQexBPS_TzaTdkmbr7qagv94t9eJNGJhheJ_5eLPshpKSEipvNyXsdn1co99Cj8OqZIQ2JeElqdlJNqG14oWQRJ6mmoumqDil59lFCBtCKKtVNcn613GL3hroczvsMUS7gmjdkKfo3aG9Roh59DCEDn1u1uDBxIQkqQm56_K3YrZgic7XzttvN8QEBdxaY70Ze_B5Kr2L4xIvs7MO-oBXv3mafcwf3mdPxcvi8Xl2_1IYLupYULM0jAtkFEECMOiaRgGRVa2WkmDTKkZkKzgBTgQgk8AaBqIWTLSgVMun2fVx7s67zzE9pTdu9ENaqRmrmFKSySap7o6qdF0IHju983YL_ktTog_-6o3-668--KsJ18nfhM-POKZP9ha9DsbiYLC1Hk3UrbP_G_QDkgeOiQ</recordid><startdate>20190525</startdate><enddate>20190525</enddate><creator>Zhang, Yuandong</creator><creator>Peng, Minjun</creator><creator>Xia, Genglei</creator><creator>Cong, Tenglong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4333-0283</orcidid></search><sort><creationdate>20190525</creationdate><title>Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube</title><author>Zhang, Yuandong ; Peng, Minjun ; Xia, Genglei ; Cong, Tenglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1cbc235e21ea6aa2af997a06487b60e9d7206d530a305ae26a292a58525da77d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brayton cycle</topic><topic>Buoyancy</topic><topic>Carbon dioxide</topic><topic>Computer simulation</topic><topic>Heat exchangers</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Localized heat transfer characteristics</topic><topic>Microchannels</topic><topic>Nuclear reactors</topic><topic>Numerical analysis</topic><topic>Pressure effects</topic><topic>Regenerators</topic><topic>Secondary flow</topic><topic>Semicircular microtube</topic><topic>Supercritical CO2</topic><topic>Supercritical fluids</topic><topic>Thermophysical properties</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuandong</creatorcontrib><creatorcontrib>Peng, Minjun</creatorcontrib><creatorcontrib>Xia, Genglei</creatorcontrib><creatorcontrib>Cong, Tenglong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuandong</au><au>Peng, Minjun</au><au>Xia, Genglei</au><au>Cong, Tenglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-05-25</date><risdate>2019</risdate><volume>154</volume><spage>380</spage><epage>392</epage><pages>380-392</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•SST k-omega model can predict the heat transfer of S-CO2 in horizontal microtube.•Interactions of Cp and buoyancy influence the local heat transfer.•Buoyancy play leading role in the heat transfer deterioration.•Hysteresis exists in the effects of buoyancy on density stratification.•Secondary flow changes the local heat transfer mechanisms profoundly.
The nuclear reactor system with supercritical carbon dioxide (S-CO2) as working fluid has good prospects in generation IV reactors. The printed circuit heat exchanger (PCHE) is a promising candidate for recuperator in S-CO2 Brayton cycle. However, the dramatic variations of S-CO2 thermophysical properties and the geometrical factors of PCHE microchannels make S-CO2 heat transfer mechanisms complex. Grasping the S-CO2 heat transfer mechanisms provides references and theoretical supports for the design of PCHE. In this paper, localized heat transfer characteristics of S-CO2 heated in a horizontal semicircular microtube were investigated numerically. The mathematical and physical models in simulating the heat transfer characteristics of supercritical fluid were validated by experimental data. The effects of pressure, mass flux, heat flux and tube geometry on S-CO2 local heat transfer characteristics near the pseudocritical temperature were studied. The results demonstrate that the dramatic variations of thermophysical properties in pseudocritical region have significant effects on heat transfer mechanisms. The distributions of specific heat (Cp) dominate the heat transfer characteristics when the effects of buoyancy are neglectable. In low mass flux or high heat flux cases, the buoyancy effects strongly influence the heat transfer mechanisms by changing the sectional parameters distributions and intensifying the secondary flow, resulting in deterioration of localized heat transfer capacity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.03.082</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4333-0283</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2019-05, Vol.154, p.380-392 |
issn | 1359-4311 1873-5606 |
language | eng |
recordid | cdi_proquest_journals_2242776269 |
source | Elsevier ScienceDirect Journals |
subjects | Brayton cycle Buoyancy Carbon dioxide Computer simulation Heat exchangers Heat flux Heat transfer Localized heat transfer characteristics Microchannels Nuclear reactors Numerical analysis Pressure effects Regenerators Secondary flow Semicircular microtube Supercritical CO2 Supercritical fluids Thermophysical properties Working fluids |
title | Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20on%20local%20heat%20transfer%20characteristics%20of%20S-CO2%20in%20horizontal%20semicircular%20microtube&rft.jtitle=Applied%20thermal%20engineering&rft.au=Zhang,%20Yuandong&rft.date=2019-05-25&rft.volume=154&rft.spage=380&rft.epage=392&rft.pages=380-392&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.03.082&rft_dat=%3Cproquest_cross%3E2242776269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242776269&rft_id=info:pmid/&rft_els_id=S1359431118344132&rfr_iscdi=true |