GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway

Estrogen plays an important role in cardioprotection. Animal experiments showed that the G-protein coupled estrogen receptor 30 (GPR30) specific agonist G1 could reduce post-ischemic dysfunction and inhibit cardiac fibroblast proliferation. However, the underlying mechanism of action is not clear. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2019-06, Vol.226, p.22-32
Hauptverfasser: Wang, Xiaowu, Lu, Linhe, Tan, Yanzhen, Jiang, Liqing, Zhao, Minggao, Gao, Erhe, Yu, Shiqiang, Liu, Jincheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue
container_start_page 22
container_title Life sciences (1973)
container_volume 226
creator Wang, Xiaowu
Lu, Linhe
Tan, Yanzhen
Jiang, Liqing
Zhao, Minggao
Gao, Erhe
Yu, Shiqiang
Liu, Jincheng
description Estrogen plays an important role in cardioprotection. Animal experiments showed that the G-protein coupled estrogen receptor 30 (GPR30) specific agonist G1 could reduce post-ischemic dysfunction and inhibit cardiac fibroblast proliferation. However, the underlying mechanism of action is not clear. The current study tests the hypothesis that GPR30 reduces myocardial infarct area and fibrosis in female ovariectomized (OVX) mice by activating the PI3K/AKT pathway. In this study, we established a myocardial infarction (MI) animal model derived from OVX C57BL/6 female mice, and investigated the effect of G1 on cardiac function by echocardiography and Hemodynamics, morphology and expression of fibrosis-related and apoptosis-related proteins by Masson's trichrome and H&E, Immunofluorescence, Western blotting and TUNEL. Combination with OVX significantly increased myocardial fibrosis and MI area compared to MI treatment alone, as determined by echocardiography and hemodynamics. Further addition of G1 changed the expression of apoptosis-related proteins, decreased the levels of tumor necrosis factor-α and interleukin-10, and reduced the degree of myocardial fibrosis and myocardial infarct area. Primary cultured cardiac fibroblasts (CFs) were subjected to hypoxia/serum deprivation (H/SD) simulating the in vivo ischemia model. When the PI3K/AKT pathway was inhibited by wortmanin in H/SD CFs, G1 failed to induce significant changes in the expression of apoptosis-related proteins. It suggested that GPR30 may improve cardiac function in female OVX mice by activating the PI3K/AKT pathway and reducing myocardial infarct size and fibrosis.
doi_str_mv 10.1016/j.lfs.2019.03.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242775155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024320519302139</els_id><sourcerecordid>2242775155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-2f6424422187643bcb3325fe61271f67bc9253d2827fea089f6e02d9c14511783</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EotvCD-CCLHFOOv6KE3GqqtJWrUSFytly7DH1apMstnfR8utxtYUjpznMM-_ofQj5wKBlwLrzdbsJueXAhhZEC3J4RVas10MDnWCvyQqAy0ZwUCfkNOc1ACilxVtyImAApXu5IuX64RsVQBP6ncNMp8PibPLRbmicg02uUJvQUjt7GuKYlhxz3dCAk90gXfY2RXRlmeJv9HSKDul4oNaVuLclzj9oeUL6cCvuzi_uHunWlqdf9vCOvAl2k_H9yzwj379cPV7eNPdfr28vL-4bJ3pWGh46yaXkvHbqpBjdKARXATvGNQudHt3AlfC85zqghX4IHQL3g2NSMaZ7cUY-HXO3afm5w1zMetmlub40nEuutWJKVYodKVfb5YTBbFOcbDoYBubZs1mb6tk8ezYgTPVcbz6-JO_GCf2_i79iK_D5CGDtt4-YTHYRZ4c-purL-CX-J_4P3G2L_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242775155</pqid></control><display><type>article</type><title>GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, Xiaowu ; Lu, Linhe ; Tan, Yanzhen ; Jiang, Liqing ; Zhao, Minggao ; Gao, Erhe ; Yu, Shiqiang ; Liu, Jincheng</creator><creatorcontrib>Wang, Xiaowu ; Lu, Linhe ; Tan, Yanzhen ; Jiang, Liqing ; Zhao, Minggao ; Gao, Erhe ; Yu, Shiqiang ; Liu, Jincheng</creatorcontrib><description>Estrogen plays an important role in cardioprotection. Animal experiments showed that the G-protein coupled estrogen receptor 30 (GPR30) specific agonist G1 could reduce post-ischemic dysfunction and inhibit cardiac fibroblast proliferation. However, the underlying mechanism of action is not clear. The current study tests the hypothesis that GPR30 reduces myocardial infarct area and fibrosis in female ovariectomized (OVX) mice by activating the PI3K/AKT pathway. In this study, we established a myocardial infarction (MI) animal model derived from OVX C57BL/6 female mice, and investigated the effect of G1 on cardiac function by echocardiography and Hemodynamics, morphology and expression of fibrosis-related and apoptosis-related proteins by Masson's trichrome and H&amp;E, Immunofluorescence, Western blotting and TUNEL. Combination with OVX significantly increased myocardial fibrosis and MI area compared to MI treatment alone, as determined by echocardiography and hemodynamics. Further addition of G1 changed the expression of apoptosis-related proteins, decreased the levels of tumor necrosis factor-α and interleukin-10, and reduced the degree of myocardial fibrosis and myocardial infarct area. Primary cultured cardiac fibroblasts (CFs) were subjected to hypoxia/serum deprivation (H/SD) simulating the in vivo ischemia model. When the PI3K/AKT pathway was inhibited by wortmanin in H/SD CFs, G1 failed to induce significant changes in the expression of apoptosis-related proteins. It suggested that GPR30 may improve cardiac function in female OVX mice by activating the PI3K/AKT pathway and reducing myocardial infarct size and fibrosis.</description><identifier>ISSN: 0024-3205</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2019.03.049</identifier><identifier>PMID: 30905784</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Animal models ; Animals ; Apoptosis ; Benzodioxoles - pharmacokinetics ; Cardiac fibroblasts ; Cardioprotection ; Cell Proliferation ; Computer simulation ; Deprivation ; Disease Models, Animal ; Echocardiography ; Estrogens ; Female ; Fibroblasts ; Fibroblasts - metabolism ; Fibrosis ; Fibrosis - metabolism ; G-protein coupled estrogen receptor 30 (GPR30) ; Heart - physiology ; Hemodynamics ; Hypoxia ; Hypoxia/serum deprivation (H/SD) ; Immunofluorescence ; In vivo methods and tests ; Interleukin 10 ; Ischemia ; Mice ; Mice, Inbred C57BL ; Morphology ; Myocardial infarction ; Myocardial infarction (MI) ; Myocardial Infarction - metabolism ; Myocardium - metabolism ; Ovariectomy ; Phosphatidylinositol 3-Kinases ; Proteins ; Proto-Oncogene Proteins c-akt ; Quinolines ; Receptors, Estrogen - metabolism ; Receptors, Estrogen - physiology ; Receptors, G-Protein-Coupled - agonists ; Receptors, G-Protein-Coupled - metabolism ; Receptors, G-Protein-Coupled - physiology ; Signal Transduction ; Tumor necrosis factor-α ; Western blotting</subject><ispartof>Life sciences (1973), 2019-06, Vol.226, p.22-32</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-2f6424422187643bcb3325fe61271f67bc9253d2827fea089f6e02d9c14511783</citedby><cites>FETCH-LOGICAL-c381t-2f6424422187643bcb3325fe61271f67bc9253d2827fea089f6e02d9c14511783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.lfs.2019.03.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30905784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Lu, Linhe</creatorcontrib><creatorcontrib>Tan, Yanzhen</creatorcontrib><creatorcontrib>Jiang, Liqing</creatorcontrib><creatorcontrib>Zhao, Minggao</creatorcontrib><creatorcontrib>Gao, Erhe</creatorcontrib><creatorcontrib>Yu, Shiqiang</creatorcontrib><creatorcontrib>Liu, Jincheng</creatorcontrib><title>GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway</title><title>Life sciences (1973)</title><addtitle>Life Sci</addtitle><description>Estrogen plays an important role in cardioprotection. Animal experiments showed that the G-protein coupled estrogen receptor 30 (GPR30) specific agonist G1 could reduce post-ischemic dysfunction and inhibit cardiac fibroblast proliferation. However, the underlying mechanism of action is not clear. The current study tests the hypothesis that GPR30 reduces myocardial infarct area and fibrosis in female ovariectomized (OVX) mice by activating the PI3K/AKT pathway. In this study, we established a myocardial infarction (MI) animal model derived from OVX C57BL/6 female mice, and investigated the effect of G1 on cardiac function by echocardiography and Hemodynamics, morphology and expression of fibrosis-related and apoptosis-related proteins by Masson's trichrome and H&amp;E, Immunofluorescence, Western blotting and TUNEL. Combination with OVX significantly increased myocardial fibrosis and MI area compared to MI treatment alone, as determined by echocardiography and hemodynamics. Further addition of G1 changed the expression of apoptosis-related proteins, decreased the levels of tumor necrosis factor-α and interleukin-10, and reduced the degree of myocardial fibrosis and myocardial infarct area. Primary cultured cardiac fibroblasts (CFs) were subjected to hypoxia/serum deprivation (H/SD) simulating the in vivo ischemia model. When the PI3K/AKT pathway was inhibited by wortmanin in H/SD CFs, G1 failed to induce significant changes in the expression of apoptosis-related proteins. It suggested that GPR30 may improve cardiac function in female OVX mice by activating the PI3K/AKT pathway and reducing myocardial infarct size and fibrosis.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Animal models</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Benzodioxoles - pharmacokinetics</subject><subject>Cardiac fibroblasts</subject><subject>Cardioprotection</subject><subject>Cell Proliferation</subject><subject>Computer simulation</subject><subject>Deprivation</subject><subject>Disease Models, Animal</subject><subject>Echocardiography</subject><subject>Estrogens</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibrosis</subject><subject>Fibrosis - metabolism</subject><subject>G-protein coupled estrogen receptor 30 (GPR30)</subject><subject>Heart - physiology</subject><subject>Hemodynamics</subject><subject>Hypoxia</subject><subject>Hypoxia/serum deprivation (H/SD)</subject><subject>Immunofluorescence</subject><subject>In vivo methods and tests</subject><subject>Interleukin 10</subject><subject>Ischemia</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Morphology</subject><subject>Myocardial infarction</subject><subject>Myocardial infarction (MI)</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Ovariectomy</subject><subject>Phosphatidylinositol 3-Kinases</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-akt</subject><subject>Quinolines</subject><subject>Receptors, Estrogen - metabolism</subject><subject>Receptors, Estrogen - physiology</subject><subject>Receptors, G-Protein-Coupled - agonists</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Receptors, G-Protein-Coupled - physiology</subject><subject>Signal Transduction</subject><subject>Tumor necrosis factor-α</subject><subject>Western blotting</subject><issn>0024-3205</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EotvCD-CCLHFOOv6KE3GqqtJWrUSFytly7DH1apMstnfR8utxtYUjpznMM-_ofQj5wKBlwLrzdbsJueXAhhZEC3J4RVas10MDnWCvyQqAy0ZwUCfkNOc1ACilxVtyImAApXu5IuX64RsVQBP6ncNMp8PibPLRbmicg02uUJvQUjt7GuKYlhxz3dCAk90gXfY2RXRlmeJv9HSKDul4oNaVuLclzj9oeUL6cCvuzi_uHunWlqdf9vCOvAl2k_H9yzwj379cPV7eNPdfr28vL-4bJ3pWGh46yaXkvHbqpBjdKARXATvGNQudHt3AlfC85zqghX4IHQL3g2NSMaZ7cUY-HXO3afm5w1zMetmlub40nEuutWJKVYodKVfb5YTBbFOcbDoYBubZs1mb6tk8ezYgTPVcbz6-JO_GCf2_i79iK_D5CGDtt4-YTHYRZ4c-purL-CX-J_4P3G2L_g</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Wang, Xiaowu</creator><creator>Lu, Linhe</creator><creator>Tan, Yanzhen</creator><creator>Jiang, Liqing</creator><creator>Zhao, Minggao</creator><creator>Gao, Erhe</creator><creator>Yu, Shiqiang</creator><creator>Liu, Jincheng</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20190601</creationdate><title>GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway</title><author>Wang, Xiaowu ; Lu, Linhe ; Tan, Yanzhen ; Jiang, Liqing ; Zhao, Minggao ; Gao, Erhe ; Yu, Shiqiang ; Liu, Jincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-2f6424422187643bcb3325fe61271f67bc9253d2827fea089f6e02d9c14511783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Animal models</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Benzodioxoles - pharmacokinetics</topic><topic>Cardiac fibroblasts</topic><topic>Cardioprotection</topic><topic>Cell Proliferation</topic><topic>Computer simulation</topic><topic>Deprivation</topic><topic>Disease Models, Animal</topic><topic>Echocardiography</topic><topic>Estrogens</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibrosis</topic><topic>Fibrosis - metabolism</topic><topic>G-protein coupled estrogen receptor 30 (GPR30)</topic><topic>Heart - physiology</topic><topic>Hemodynamics</topic><topic>Hypoxia</topic><topic>Hypoxia/serum deprivation (H/SD)</topic><topic>Immunofluorescence</topic><topic>In vivo methods and tests</topic><topic>Interleukin 10</topic><topic>Ischemia</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Morphology</topic><topic>Myocardial infarction</topic><topic>Myocardial infarction (MI)</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Ovariectomy</topic><topic>Phosphatidylinositol 3-Kinases</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-akt</topic><topic>Quinolines</topic><topic>Receptors, Estrogen - metabolism</topic><topic>Receptors, Estrogen - physiology</topic><topic>Receptors, G-Protein-Coupled - agonists</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Receptors, G-Protein-Coupled - physiology</topic><topic>Signal Transduction</topic><topic>Tumor necrosis factor-α</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaowu</creatorcontrib><creatorcontrib>Lu, Linhe</creatorcontrib><creatorcontrib>Tan, Yanzhen</creatorcontrib><creatorcontrib>Jiang, Liqing</creatorcontrib><creatorcontrib>Zhao, Minggao</creatorcontrib><creatorcontrib>Gao, Erhe</creatorcontrib><creatorcontrib>Yu, Shiqiang</creatorcontrib><creatorcontrib>Liu, Jincheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaowu</au><au>Lu, Linhe</au><au>Tan, Yanzhen</au><au>Jiang, Liqing</au><au>Zhao, Minggao</au><au>Gao, Erhe</au><au>Yu, Shiqiang</au><au>Liu, Jincheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway</atitle><jtitle>Life sciences (1973)</jtitle><addtitle>Life Sci</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>226</volume><spage>22</spage><epage>32</epage><pages>22-32</pages><issn>0024-3205</issn><eissn>1879-0631</eissn><abstract>Estrogen plays an important role in cardioprotection. Animal experiments showed that the G-protein coupled estrogen receptor 30 (GPR30) specific agonist G1 could reduce post-ischemic dysfunction and inhibit cardiac fibroblast proliferation. However, the underlying mechanism of action is not clear. The current study tests the hypothesis that GPR30 reduces myocardial infarct area and fibrosis in female ovariectomized (OVX) mice by activating the PI3K/AKT pathway. In this study, we established a myocardial infarction (MI) animal model derived from OVX C57BL/6 female mice, and investigated the effect of G1 on cardiac function by echocardiography and Hemodynamics, morphology and expression of fibrosis-related and apoptosis-related proteins by Masson's trichrome and H&amp;E, Immunofluorescence, Western blotting and TUNEL. Combination with OVX significantly increased myocardial fibrosis and MI area compared to MI treatment alone, as determined by echocardiography and hemodynamics. Further addition of G1 changed the expression of apoptosis-related proteins, decreased the levels of tumor necrosis factor-α and interleukin-10, and reduced the degree of myocardial fibrosis and myocardial infarct area. Primary cultured cardiac fibroblasts (CFs) were subjected to hypoxia/serum deprivation (H/SD) simulating the in vivo ischemia model. When the PI3K/AKT pathway was inhibited by wortmanin in H/SD CFs, G1 failed to induce significant changes in the expression of apoptosis-related proteins. It suggested that GPR30 may improve cardiac function in female OVX mice by activating the PI3K/AKT pathway and reducing myocardial infarct size and fibrosis.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>30905784</pmid><doi>10.1016/j.lfs.2019.03.049</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-3205
ispartof Life sciences (1973), 2019-06, Vol.226, p.22-32
issn 0024-3205
1879-0631
language eng
recordid cdi_proquest_journals_2242775155
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects 1-Phosphatidylinositol 3-kinase
AKT protein
Animal models
Animals
Apoptosis
Benzodioxoles - pharmacokinetics
Cardiac fibroblasts
Cardioprotection
Cell Proliferation
Computer simulation
Deprivation
Disease Models, Animal
Echocardiography
Estrogens
Female
Fibroblasts
Fibroblasts - metabolism
Fibrosis
Fibrosis - metabolism
G-protein coupled estrogen receptor 30 (GPR30)
Heart - physiology
Hemodynamics
Hypoxia
Hypoxia/serum deprivation (H/SD)
Immunofluorescence
In vivo methods and tests
Interleukin 10
Ischemia
Mice
Mice, Inbred C57BL
Morphology
Myocardial infarction
Myocardial infarction (MI)
Myocardial Infarction - metabolism
Myocardium - metabolism
Ovariectomy
Phosphatidylinositol 3-Kinases
Proteins
Proto-Oncogene Proteins c-akt
Quinolines
Receptors, Estrogen - metabolism
Receptors, Estrogen - physiology
Receptors, G-Protein-Coupled - agonists
Receptors, G-Protein-Coupled - metabolism
Receptors, G-Protein-Coupled - physiology
Signal Transduction
Tumor necrosis factor-α
Western blotting
title GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPR%2030%20reduces%20myocardial%20infarct%20area%20and%20fibrosis%20in%20female%20ovariectomized%20mice%20by%20activating%20the%20PI3K/AKT%20pathway&rft.jtitle=Life%20sciences%20(1973)&rft.au=Wang,%20Xiaowu&rft.date=2019-06-01&rft.volume=226&rft.spage=22&rft.epage=32&rft.pages=22-32&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2019.03.049&rft_dat=%3Cproquest_cross%3E2242775155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242775155&rft_id=info:pmid/30905784&rft_els_id=S0024320519302139&rfr_iscdi=true