Mixed Finite Element Method for Nonlinear Diffusion Equation in Image Processing
In this paper we present a robust approach for dealing with numerical solutions of partial differential equations (PDEs) arising in image processing and computer vision. In this context, we introduce the nonlinear Perona-Malik diffusion equation and its improvement by Catté et al. After a semi-impli...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2019-04, Vol.29 (2), p.296-308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present a robust approach for dealing with numerical solutions of partial differential equations (PDEs) arising in image processing and computer vision. In this context, we introduce the nonlinear Perona-Malik diffusion equation and its improvement by Catté et al. After a semi-implicit approximation in scale we introduce a new variable and we show that the weak formulation of the problem obtained has a unique solution in a well-chosen space. We use the discretization by mixed finite element method (MFEM) based on Galerkin technique and Taylor-hode elements
P
2
–
P
1
and
Q
2
–
Q
1
. To validate our approach some numerical results are given. |
---|---|
ISSN: | 1054-6618 1555-6212 |
DOI: | 10.1134/S1054661819020020 |