Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods

In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of high performance computing applications 2019-07, Vol.33 (4), p.619-631
Hauptverfasser: Elliott, Samuel, Kumar, Raghu Raj Prasanna, Flyer, Natasha, Ta, Tuan, Loft, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 631
container_issue 4
container_start_page 619
container_title The international journal of high performance computing applications
container_volume 33
creator Elliott, Samuel
Kumar, Raghu Raj Prasanna
Flyer, Natasha
Ta, Tuan
Loft, Richard
description In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits over standard pseudospectral and traditional FD methods, but there are many challenges in terms of their performance and parallel implementation, due to RBF-FDs use of relatively large halos and unstructured indexing. With the use of reverse Cuthill–McKee node ordering and tiled transposition of the state variable matrices and RBF-FD differentiation matrices, these challenges were overcome. The RBF-FD solver was implemented for the SWE on the rotating sphere using message passing interface plus OpenMP/OpenACC to demonstrate scalability and performance portability on the three currently dominant high performance computing (HPC) architectures, namely, Intel Xeon multicore, Intel Xeon Phi manycore, and NVIDIA graphics processing unit systems.
doi_str_mv 10.1177/1094342018797170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242040712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1094342018797170</sage_id><sourcerecordid>2242040712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-71bf0234731542208963ed6bdd8778b6eb72174ffb005f32ee490acfa5db73623</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgOLp3GXBrNa827VIGHwMDbnRd0uZmJkObdJLWwb_wk22pIAiu7uM8LvcgdE3JHaVS3lNSCC4YobksJJXkBC2oFDRhuchOx36Ekwk_Rxcx7gkhmeDpAn2t266BFlyveusd9gYrHGvVqKqBW9xBMD60ytWAOx_6aYvjTjWNP-Kj6iFgOAyzNPrmY5yHaN0WB6WtanCloo3YDK6eKMkWHIRRpbGxzvaAtTUGAkz2LfQ7r-MlOjOqiXD1U5fo_enxbfWSbF6f16uHTVJzUvSJpJUhjAvJaSoYI3mRcdBZpXUuZV5lUEk2_m9MRUhqOAMQBVG1UamuJM8YX6Kb2bcL_jBA7Mu9H4IbT5aMjTkJIunEIjOrDj7GAKbsgm1V-CwpKafcy7-5j5JklkS1hV_Tf_nfhM-E_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242040712</pqid></control><display><type>article</type><title>Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods</title><source>Access via SAGE</source><source>Alma/SFX Local Collection</source><creator>Elliott, Samuel ; Kumar, Raghu Raj Prasanna ; Flyer, Natasha ; Ta, Tuan ; Loft, Richard</creator><creatorcontrib>Elliott, Samuel ; Kumar, Raghu Raj Prasanna ; Flyer, Natasha ; Ta, Tuan ; Loft, Richard</creatorcontrib><description>In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits over standard pseudospectral and traditional FD methods, but there are many challenges in terms of their performance and parallel implementation, due to RBF-FDs use of relatively large halos and unstructured indexing. With the use of reverse Cuthill–McKee node ordering and tiled transposition of the state variable matrices and RBF-FD differentiation matrices, these challenges were overcome. The RBF-FD solver was implemented for the SWE on the rotating sphere using message passing interface plus OpenMP/OpenACC to demonstrate scalability and performance portability on the three currently dominant high performance computing (HPC) architectures, namely, Intel Xeon multicore, Intel Xeon Phi manycore, and NVIDIA graphics processing unit systems.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/1094342018797170</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Basis functions ; Computer simulation ; Finite difference method ; Finite element method ; Halos ; Mathematical analysis ; Meshless methods ; Message passing ; Numerical methods ; Radial basis function ; Rotating spheres ; Shallow water equations ; State variable</subject><ispartof>The international journal of high performance computing applications, 2019-07, Vol.33 (4), p.619-631</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-71bf0234731542208963ed6bdd8778b6eb72174ffb005f32ee490acfa5db73623</citedby><cites>FETCH-LOGICAL-c309t-71bf0234731542208963ed6bdd8778b6eb72174ffb005f32ee490acfa5db73623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1094342018797170$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1094342018797170$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21821,27926,27927,43623,43624</link.rule.ids></links><search><creatorcontrib>Elliott, Samuel</creatorcontrib><creatorcontrib>Kumar, Raghu Raj Prasanna</creatorcontrib><creatorcontrib>Flyer, Natasha</creatorcontrib><creatorcontrib>Ta, Tuan</creatorcontrib><creatorcontrib>Loft, Richard</creatorcontrib><title>Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods</title><title>The international journal of high performance computing applications</title><description>In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits over standard pseudospectral and traditional FD methods, but there are many challenges in terms of their performance and parallel implementation, due to RBF-FDs use of relatively large halos and unstructured indexing. With the use of reverse Cuthill–McKee node ordering and tiled transposition of the state variable matrices and RBF-FD differentiation matrices, these challenges were overcome. The RBF-FD solver was implemented for the SWE on the rotating sphere using message passing interface plus OpenMP/OpenACC to demonstrate scalability and performance portability on the three currently dominant high performance computing (HPC) architectures, namely, Intel Xeon multicore, Intel Xeon Phi manycore, and NVIDIA graphics processing unit systems.</description><subject>Basis functions</subject><subject>Computer simulation</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Halos</subject><subject>Mathematical analysis</subject><subject>Meshless methods</subject><subject>Message passing</subject><subject>Numerical methods</subject><subject>Radial basis function</subject><subject>Rotating spheres</subject><subject>Shallow water equations</subject><subject>State variable</subject><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgOLp3GXBrNa827VIGHwMDbnRd0uZmJkObdJLWwb_wk22pIAiu7uM8LvcgdE3JHaVS3lNSCC4YobksJJXkBC2oFDRhuchOx36Ekwk_Rxcx7gkhmeDpAn2t266BFlyveusd9gYrHGvVqKqBW9xBMD60ytWAOx_6aYvjTjWNP-Kj6iFgOAyzNPrmY5yHaN0WB6WtanCloo3YDK6eKMkWHIRRpbGxzvaAtTUGAkz2LfQ7r-MlOjOqiXD1U5fo_enxbfWSbF6f16uHTVJzUvSJpJUhjAvJaSoYI3mRcdBZpXUuZV5lUEk2_m9MRUhqOAMQBVG1UamuJM8YX6Kb2bcL_jBA7Mu9H4IbT5aMjTkJIunEIjOrDj7GAKbsgm1V-CwpKafcy7-5j5JklkS1hV_Tf_nfhM-E_w</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Elliott, Samuel</creator><creator>Kumar, Raghu Raj Prasanna</creator><creator>Flyer, Natasha</creator><creator>Ta, Tuan</creator><creator>Loft, Richard</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201907</creationdate><title>Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods</title><author>Elliott, Samuel ; Kumar, Raghu Raj Prasanna ; Flyer, Natasha ; Ta, Tuan ; Loft, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-71bf0234731542208963ed6bdd8778b6eb72174ffb005f32ee490acfa5db73623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Basis functions</topic><topic>Computer simulation</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Halos</topic><topic>Mathematical analysis</topic><topic>Meshless methods</topic><topic>Message passing</topic><topic>Numerical methods</topic><topic>Radial basis function</topic><topic>Rotating spheres</topic><topic>Shallow water equations</topic><topic>State variable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elliott, Samuel</creatorcontrib><creatorcontrib>Kumar, Raghu Raj Prasanna</creatorcontrib><creatorcontrib>Flyer, Natasha</creatorcontrib><creatorcontrib>Ta, Tuan</creatorcontrib><creatorcontrib>Loft, Richard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elliott, Samuel</au><au>Kumar, Raghu Raj Prasanna</au><au>Flyer, Natasha</au><au>Ta, Tuan</au><au>Loft, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods</atitle><jtitle>The international journal of high performance computing applications</jtitle><date>2019-07</date><risdate>2019</risdate><volume>33</volume><issue>4</issue><spage>619</spage><epage>631</epage><pages>619-631</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits over standard pseudospectral and traditional FD methods, but there are many challenges in terms of their performance and parallel implementation, due to RBF-FDs use of relatively large halos and unstructured indexing. With the use of reverse Cuthill–McKee node ordering and tiled transposition of the state variable matrices and RBF-FD differentiation matrices, these challenges were overcome. The RBF-FD solver was implemented for the SWE on the rotating sphere using message passing interface plus OpenMP/OpenACC to demonstrate scalability and performance portability on the three currently dominant high performance computing (HPC) architectures, namely, Intel Xeon multicore, Intel Xeon Phi manycore, and NVIDIA graphics processing unit systems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1094342018797170</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1094-3420
ispartof The international journal of high performance computing applications, 2019-07, Vol.33 (4), p.619-631
issn 1094-3420
1741-2846
language eng
recordid cdi_proquest_journals_2242040712
source Access via SAGE; Alma/SFX Local Collection
subjects Basis functions
Computer simulation
Finite difference method
Finite element method
Halos
Mathematical analysis
Meshless methods
Message passing
Numerical methods
Radial basis function
Rotating spheres
Shallow water equations
State variable
title Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20scalable,%20performance%20portable%20shallow%20water%20equation%20solver%20using%20radial%20basis%20function-generated%20finite%20difference%20methods&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Elliott,%20Samuel&rft.date=2019-07&rft.volume=33&rft.issue=4&rft.spage=619&rft.epage=631&rft.pages=619-631&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/1094342018797170&rft_dat=%3Cproquest_cross%3E2242040712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242040712&rft_id=info:pmid/&rft_sage_id=10.1177_1094342018797170&rfr_iscdi=true