Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods
In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits...
Gespeichert in:
Veröffentlicht in: | The international journal of high performance computing applications 2019-07, Vol.33 (4), p.619-631 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 631 |
---|---|
container_issue | 4 |
container_start_page | 619 |
container_title | The international journal of high performance computing applications |
container_volume | 33 |
creator | Elliott, Samuel Kumar, Raghu Raj Prasanna Flyer, Natasha Ta, Tuan Loft, Richard |
description | In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits over standard pseudospectral and traditional FD methods, but there are many challenges in terms of their performance and parallel implementation, due to RBF-FDs use of relatively large halos and unstructured indexing. With the use of reverse Cuthill–McKee node ordering and tiled transposition of the state variable matrices and RBF-FD differentiation matrices, these challenges were overcome. The RBF-FD solver was implemented for the SWE on the rotating sphere using message passing interface plus OpenMP/OpenACC to demonstrate scalability and performance portability on the three currently dominant high performance computing (HPC) architectures, namely, Intel Xeon multicore, Intel Xeon Phi manycore, and NVIDIA graphics processing unit systems. |
doi_str_mv | 10.1177/1094342018797170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2242040712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1094342018797170</sage_id><sourcerecordid>2242040712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-71bf0234731542208963ed6bdd8778b6eb72174ffb005f32ee490acfa5db73623</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaLgOLp3GXBrNa827VIGHwMDbnRd0uZmJkObdJLWwb_wk22pIAiu7uM8LvcgdE3JHaVS3lNSCC4YobksJJXkBC2oFDRhuchOx36Ekwk_Rxcx7gkhmeDpAn2t266BFlyveusd9gYrHGvVqKqBW9xBMD60ytWAOx_6aYvjTjWNP-Kj6iFgOAyzNPrmY5yHaN0WB6WtanCloo3YDK6eKMkWHIRRpbGxzvaAtTUGAkz2LfQ7r-MlOjOqiXD1U5fo_enxbfWSbF6f16uHTVJzUvSJpJUhjAvJaSoYI3mRcdBZpXUuZV5lUEk2_m9MRUhqOAMQBVG1UamuJM8YX6Kb2bcL_jBA7Mu9H4IbT5aMjTkJIunEIjOrDj7GAKbsgm1V-CwpKafcy7-5j5JklkS1hV_Tf_nfhM-E_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2242040712</pqid></control><display><type>article</type><title>Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods</title><source>Access via SAGE</source><source>Alma/SFX Local Collection</source><creator>Elliott, Samuel ; Kumar, Raghu Raj Prasanna ; Flyer, Natasha ; Ta, Tuan ; Loft, Richard</creator><creatorcontrib>Elliott, Samuel ; Kumar, Raghu Raj Prasanna ; Flyer, Natasha ; Ta, Tuan ; Loft, Richard</creatorcontrib><description>In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits over standard pseudospectral and traditional FD methods, but there are many challenges in terms of their performance and parallel implementation, due to RBF-FDs use of relatively large halos and unstructured indexing. With the use of reverse Cuthill–McKee node ordering and tiled transposition of the state variable matrices and RBF-FD differentiation matrices, these challenges were overcome. The RBF-FD solver was implemented for the SWE on the rotating sphere using message passing interface plus OpenMP/OpenACC to demonstrate scalability and performance portability on the three currently dominant high performance computing (HPC) architectures, namely, Intel Xeon multicore, Intel Xeon Phi manycore, and NVIDIA graphics processing unit systems.</description><identifier>ISSN: 1094-3420</identifier><identifier>EISSN: 1741-2846</identifier><identifier>DOI: 10.1177/1094342018797170</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Basis functions ; Computer simulation ; Finite difference method ; Finite element method ; Halos ; Mathematical analysis ; Meshless methods ; Message passing ; Numerical methods ; Radial basis function ; Rotating spheres ; Shallow water equations ; State variable</subject><ispartof>The international journal of high performance computing applications, 2019-07, Vol.33 (4), p.619-631</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-71bf0234731542208963ed6bdd8778b6eb72174ffb005f32ee490acfa5db73623</citedby><cites>FETCH-LOGICAL-c309t-71bf0234731542208963ed6bdd8778b6eb72174ffb005f32ee490acfa5db73623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1094342018797170$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1094342018797170$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>315,781,785,21821,27926,27927,43623,43624</link.rule.ids></links><search><creatorcontrib>Elliott, Samuel</creatorcontrib><creatorcontrib>Kumar, Raghu Raj Prasanna</creatorcontrib><creatorcontrib>Flyer, Natasha</creatorcontrib><creatorcontrib>Ta, Tuan</creatorcontrib><creatorcontrib>Loft, Richard</creatorcontrib><title>Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods</title><title>The international journal of high performance computing applications</title><description>In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits over standard pseudospectral and traditional FD methods, but there are many challenges in terms of their performance and parallel implementation, due to RBF-FDs use of relatively large halos and unstructured indexing. With the use of reverse Cuthill–McKee node ordering and tiled transposition of the state variable matrices and RBF-FD differentiation matrices, these challenges were overcome. The RBF-FD solver was implemented for the SWE on the rotating sphere using message passing interface plus OpenMP/OpenACC to demonstrate scalability and performance portability on the three currently dominant high performance computing (HPC) architectures, namely, Intel Xeon multicore, Intel Xeon Phi manycore, and NVIDIA graphics processing unit systems.</description><subject>Basis functions</subject><subject>Computer simulation</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Halos</subject><subject>Mathematical analysis</subject><subject>Meshless methods</subject><subject>Message passing</subject><subject>Numerical methods</subject><subject>Radial basis function</subject><subject>Rotating spheres</subject><subject>Shallow water equations</subject><subject>State variable</subject><issn>1094-3420</issn><issn>1741-2846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaLgOLp3GXBrNa827VIGHwMDbnRd0uZmJkObdJLWwb_wk22pIAiu7uM8LvcgdE3JHaVS3lNSCC4YobksJJXkBC2oFDRhuchOx36Ekwk_Rxcx7gkhmeDpAn2t266BFlyveusd9gYrHGvVqKqBW9xBMD60ytWAOx_6aYvjTjWNP-Kj6iFgOAyzNPrmY5yHaN0WB6WtanCloo3YDK6eKMkWHIRRpbGxzvaAtTUGAkz2LfQ7r-MlOjOqiXD1U5fo_enxbfWSbF6f16uHTVJzUvSJpJUhjAvJaSoYI3mRcdBZpXUuZV5lUEk2_m9MRUhqOAMQBVG1UamuJM8YX6Kb2bcL_jBA7Mu9H4IbT5aMjTkJIunEIjOrDj7GAKbsgm1V-CwpKafcy7-5j5JklkS1hV_Tf_nfhM-E_w</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Elliott, Samuel</creator><creator>Kumar, Raghu Raj Prasanna</creator><creator>Flyer, Natasha</creator><creator>Ta, Tuan</creator><creator>Loft, Richard</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201907</creationdate><title>Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods</title><author>Elliott, Samuel ; Kumar, Raghu Raj Prasanna ; Flyer, Natasha ; Ta, Tuan ; Loft, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-71bf0234731542208963ed6bdd8778b6eb72174ffb005f32ee490acfa5db73623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Basis functions</topic><topic>Computer simulation</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Halos</topic><topic>Mathematical analysis</topic><topic>Meshless methods</topic><topic>Message passing</topic><topic>Numerical methods</topic><topic>Radial basis function</topic><topic>Rotating spheres</topic><topic>Shallow water equations</topic><topic>State variable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elliott, Samuel</creatorcontrib><creatorcontrib>Kumar, Raghu Raj Prasanna</creatorcontrib><creatorcontrib>Flyer, Natasha</creatorcontrib><creatorcontrib>Ta, Tuan</creatorcontrib><creatorcontrib>Loft, Richard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The international journal of high performance computing applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elliott, Samuel</au><au>Kumar, Raghu Raj Prasanna</au><au>Flyer, Natasha</au><au>Ta, Tuan</au><au>Loft, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods</atitle><jtitle>The international journal of high performance computing applications</jtitle><date>2019-07</date><risdate>2019</risdate><volume>33</volume><issue>4</issue><spage>619</spage><epage>631</epage><pages>619-631</pages><issn>1094-3420</issn><eissn>1741-2846</eissn><abstract>In this article, we describe and analyze the computational performance of a parallel shallow water equation (SWE) solver for atmospheric simulation using radial basis function-finite difference (RBF-FD) methods. The inherent “meshless” nature of RBF-FD methods provides significant numerical benefits over standard pseudospectral and traditional FD methods, but there are many challenges in terms of their performance and parallel implementation, due to RBF-FDs use of relatively large halos and unstructured indexing. With the use of reverse Cuthill–McKee node ordering and tiled transposition of the state variable matrices and RBF-FD differentiation matrices, these challenges were overcome. The RBF-FD solver was implemented for the SWE on the rotating sphere using message passing interface plus OpenMP/OpenACC to demonstrate scalability and performance portability on the three currently dominant high performance computing (HPC) architectures, namely, Intel Xeon multicore, Intel Xeon Phi manycore, and NVIDIA graphics processing unit systems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1094342018797170</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-3420 |
ispartof | The international journal of high performance computing applications, 2019-07, Vol.33 (4), p.619-631 |
issn | 1094-3420 1741-2846 |
language | eng |
recordid | cdi_proquest_journals_2242040712 |
source | Access via SAGE; Alma/SFX Local Collection |
subjects | Basis functions Computer simulation Finite difference method Finite element method Halos Mathematical analysis Meshless methods Message passing Numerical methods Radial basis function Rotating spheres Shallow water equations State variable |
title | Implementation of a scalable, performance portable shallow water equation solver using radial basis function-generated finite difference methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20scalable,%20performance%20portable%20shallow%20water%20equation%20solver%20using%20radial%20basis%20function-generated%20finite%20difference%20methods&rft.jtitle=The%20international%20journal%20of%20high%20performance%20computing%20applications&rft.au=Elliott,%20Samuel&rft.date=2019-07&rft.volume=33&rft.issue=4&rft.spage=619&rft.epage=631&rft.pages=619-631&rft.issn=1094-3420&rft.eissn=1741-2846&rft_id=info:doi/10.1177/1094342018797170&rft_dat=%3Cproquest_cross%3E2242040712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2242040712&rft_id=info:pmid/&rft_sage_id=10.1177_1094342018797170&rfr_iscdi=true |