Group classification of dynamics equations of self-gravitating gas

•The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2019-09, Vol.76, p.109-115
Hauptverfasser: Adarchenko, V.A., Panov, A.V., Voronin, S.M., Klebanov, I.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue
container_start_page 109
container_title Communications in nonlinear science & numerical simulation
container_volume 76
creator Adarchenko, V.A.
Panov, A.V.
Voronin, S.M.
Klebanov, I.I.
description •The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done. In the paper, a group classification problem is solved for a system of equations which describes motion of self-gravitating gas. A parameter in group classification problem is a function which is determined by an equation of state. A kernel of Lie algebras admitted by the system and an algebra of equivalence transformations group are derived. All specifications of the parameter that lead to extensions of the kernel are found.
doi_str_mv 10.1016/j.cnsns.2019.04.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2241323782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570419301273</els_id><sourcerecordid>2241323782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-64a62f91c56918ef75a20bfb0da8c4e7664c6ee8232b4d8f0ff260964070169c3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCVgiMSecHcd2BgaooCBVYoHZch27ctQmrS-p1G-PQ5mZ7vTTe_fnEXJPoaBAxWNb2A47LBjQugBeJHZBZlRJlUsm-WXqAWReSeDX5AaxhaSoKz4jL8vYj_vMbg1i8MGaIfRd1vusOXVmFyxm7jD-Qpwouq3PN9Ecw5Bgt8k2Bm_JlTdbdHd_dU6-316_Fu_56nP5sXhe5ZYpOuSCG8F8TW0laqqcl5VhsPZraIyy3EkhuBXOKVayNW-UB--ZgFpwkNOxtpyTh_PcfewPo8NBt_0Yu7RSM8ZpyUqZzHNSnlU29ojReb2PYWfiSVPQU1i61b9h6SksDVwnllxPZ5dLDxyDixptcJ11TYjODrrpw7_-H2Zzc4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241323782</pqid></control><display><type>article</type><title>Group classification of dynamics equations of self-gravitating gas</title><source>Access via ScienceDirect (Elsevier)</source><creator>Adarchenko, V.A. ; Panov, A.V. ; Voronin, S.M. ; Klebanov, I.I.</creator><creatorcontrib>Adarchenko, V.A. ; Panov, A.V. ; Voronin, S.M. ; Klebanov, I.I.</creatorcontrib><description>•The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done. In the paper, a group classification problem is solved for a system of equations which describes motion of self-gravitating gas. A parameter in group classification problem is a function which is determined by an equation of state. A kernel of Lie algebras admitted by the system and an algebra of equivalence transformations group are derived. All specifications of the parameter that lead to extensions of the kernel are found.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2019.04.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Admitted group ; Algebra ; Classification ; Equations of state ; Equivalence transformations ; Gravitation ; Group classification ; Group dynamics ; Kernels ; Lie groups ; Mathematical analysis ; Nonlinear equations ; Parameters ; Partial differential equations ; Self-gravitating gas</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2019-09, Vol.76, p.109-115</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-64a62f91c56918ef75a20bfb0da8c4e7664c6ee8232b4d8f0ff260964070169c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2019.04.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Adarchenko, V.A.</creatorcontrib><creatorcontrib>Panov, A.V.</creatorcontrib><creatorcontrib>Voronin, S.M.</creatorcontrib><creatorcontrib>Klebanov, I.I.</creatorcontrib><title>Group classification of dynamics equations of self-gravitating gas</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done. In the paper, a group classification problem is solved for a system of equations which describes motion of self-gravitating gas. A parameter in group classification problem is a function which is determined by an equation of state. A kernel of Lie algebras admitted by the system and an algebra of equivalence transformations group are derived. All specifications of the parameter that lead to extensions of the kernel are found.</description><subject>Admitted group</subject><subject>Algebra</subject><subject>Classification</subject><subject>Equations of state</subject><subject>Equivalence transformations</subject><subject>Gravitation</subject><subject>Group classification</subject><subject>Group dynamics</subject><subject>Kernels</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Self-gravitating gas</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCVgiMSecHcd2BgaooCBVYoHZch27ctQmrS-p1G-PQ5mZ7vTTe_fnEXJPoaBAxWNb2A47LBjQugBeJHZBZlRJlUsm-WXqAWReSeDX5AaxhaSoKz4jL8vYj_vMbg1i8MGaIfRd1vusOXVmFyxm7jD-Qpwouq3PN9Ecw5Bgt8k2Bm_JlTdbdHd_dU6-316_Fu_56nP5sXhe5ZYpOuSCG8F8TW0laqqcl5VhsPZraIyy3EkhuBXOKVayNW-UB--ZgFpwkNOxtpyTh_PcfewPo8NBt_0Yu7RSM8ZpyUqZzHNSnlU29ojReb2PYWfiSVPQU1i61b9h6SksDVwnllxPZ5dLDxyDixptcJ11TYjODrrpw7_-H2Zzc4k</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Adarchenko, V.A.</creator><creator>Panov, A.V.</creator><creator>Voronin, S.M.</creator><creator>Klebanov, I.I.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201909</creationdate><title>Group classification of dynamics equations of self-gravitating gas</title><author>Adarchenko, V.A. ; Panov, A.V. ; Voronin, S.M. ; Klebanov, I.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-64a62f91c56918ef75a20bfb0da8c4e7664c6ee8232b4d8f0ff260964070169c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Admitted group</topic><topic>Algebra</topic><topic>Classification</topic><topic>Equations of state</topic><topic>Equivalence transformations</topic><topic>Gravitation</topic><topic>Group classification</topic><topic>Group dynamics</topic><topic>Kernels</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Self-gravitating gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adarchenko, V.A.</creatorcontrib><creatorcontrib>Panov, A.V.</creatorcontrib><creatorcontrib>Voronin, S.M.</creatorcontrib><creatorcontrib>Klebanov, I.I.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adarchenko, V.A.</au><au>Panov, A.V.</au><au>Voronin, S.M.</au><au>Klebanov, I.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group classification of dynamics equations of self-gravitating gas</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2019-09</date><risdate>2019</risdate><volume>76</volume><spage>109</spage><epage>115</epage><pages>109-115</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done. In the paper, a group classification problem is solved for a system of equations which describes motion of self-gravitating gas. A parameter in group classification problem is a function which is determined by an equation of state. A kernel of Lie algebras admitted by the system and an algebra of equivalence transformations group are derived. All specifications of the parameter that lead to extensions of the kernel are found.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2019.04.016</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2019-09, Vol.76, p.109-115
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2241323782
source Access via ScienceDirect (Elsevier)
subjects Admitted group
Algebra
Classification
Equations of state
Equivalence transformations
Gravitation
Group classification
Group dynamics
Kernels
Lie groups
Mathematical analysis
Nonlinear equations
Parameters
Partial differential equations
Self-gravitating gas
title Group classification of dynamics equations of self-gravitating gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20classification%20of%20dynamics%20equations%20of%20self-gravitating%20gas&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Adarchenko,%20V.A.&rft.date=2019-09&rft.volume=76&rft.spage=109&rft.epage=115&rft.pages=109-115&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2019.04.016&rft_dat=%3Cproquest_cross%3E2241323782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2241323782&rft_id=info:pmid/&rft_els_id=S1007570419301273&rfr_iscdi=true