Group classification of dynamics equations of self-gravitating gas
•The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done. In...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2019-09, Vol.76, p.109-115 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | |
container_start_page | 109 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 76 |
creator | Adarchenko, V.A. Panov, A.V. Voronin, S.M. Klebanov, I.I. |
description | •The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done.
In the paper, a group classification problem is solved for a system of equations which describes motion of self-gravitating gas. A parameter in group classification problem is a function which is determined by an equation of state. A kernel of Lie algebras admitted by the system and an algebra of equivalence transformations group are derived. All specifications of the parameter that lead to extensions of the kernel are found. |
doi_str_mv | 10.1016/j.cnsns.2019.04.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2241323782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570419301273</els_id><sourcerecordid>2241323782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-64a62f91c56918ef75a20bfb0da8c4e7664c6ee8232b4d8f0ff260964070169c3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCVgiMSecHcd2BgaooCBVYoHZch27ctQmrS-p1G-PQ5mZ7vTTe_fnEXJPoaBAxWNb2A47LBjQugBeJHZBZlRJlUsm-WXqAWReSeDX5AaxhaSoKz4jL8vYj_vMbg1i8MGaIfRd1vusOXVmFyxm7jD-Qpwouq3PN9Ecw5Bgt8k2Bm_JlTdbdHd_dU6-316_Fu_56nP5sXhe5ZYpOuSCG8F8TW0laqqcl5VhsPZraIyy3EkhuBXOKVayNW-UB--ZgFpwkNOxtpyTh_PcfewPo8NBt_0Yu7RSM8ZpyUqZzHNSnlU29ojReb2PYWfiSVPQU1i61b9h6SksDVwnllxPZ5dLDxyDixptcJ11TYjODrrpw7_-H2Zzc4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2241323782</pqid></control><display><type>article</type><title>Group classification of dynamics equations of self-gravitating gas</title><source>Access via ScienceDirect (Elsevier)</source><creator>Adarchenko, V.A. ; Panov, A.V. ; Voronin, S.M. ; Klebanov, I.I.</creator><creatorcontrib>Adarchenko, V.A. ; Panov, A.V. ; Voronin, S.M. ; Klebanov, I.I.</creatorcontrib><description>•The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done.
In the paper, a group classification problem is solved for a system of equations which describes motion of self-gravitating gas. A parameter in group classification problem is a function which is determined by an equation of state. A kernel of Lie algebras admitted by the system and an algebra of equivalence transformations group are derived. All specifications of the parameter that lead to extensions of the kernel are found.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2019.04.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Admitted group ; Algebra ; Classification ; Equations of state ; Equivalence transformations ; Gravitation ; Group classification ; Group dynamics ; Kernels ; Lie groups ; Mathematical analysis ; Nonlinear equations ; Parameters ; Partial differential equations ; Self-gravitating gas</subject><ispartof>Communications in nonlinear science & numerical simulation, 2019-09, Vol.76, p.109-115</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-64a62f91c56918ef75a20bfb0da8c4e7664c6ee8232b4d8f0ff260964070169c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2019.04.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Adarchenko, V.A.</creatorcontrib><creatorcontrib>Panov, A.V.</creatorcontrib><creatorcontrib>Voronin, S.M.</creatorcontrib><creatorcontrib>Klebanov, I.I.</creatorcontrib><title>Group classification of dynamics equations of self-gravitating gas</title><title>Communications in nonlinear science & numerical simulation</title><description>•The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done.
In the paper, a group classification problem is solved for a system of equations which describes motion of self-gravitating gas. A parameter in group classification problem is a function which is determined by an equation of state. A kernel of Lie algebras admitted by the system and an algebra of equivalence transformations group are derived. All specifications of the parameter that lead to extensions of the kernel are found.</description><subject>Admitted group</subject><subject>Algebra</subject><subject>Classification</subject><subject>Equations of state</subject><subject>Equivalence transformations</subject><subject>Gravitation</subject><subject>Group classification</subject><subject>Group dynamics</subject><subject>Kernels</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Self-gravitating gas</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCVgiMSecHcd2BgaooCBVYoHZch27ctQmrS-p1G-PQ5mZ7vTTe_fnEXJPoaBAxWNb2A47LBjQugBeJHZBZlRJlUsm-WXqAWReSeDX5AaxhaSoKz4jL8vYj_vMbg1i8MGaIfRd1vusOXVmFyxm7jD-Qpwouq3PN9Ecw5Bgt8k2Bm_JlTdbdHd_dU6-316_Fu_56nP5sXhe5ZYpOuSCG8F8TW0laqqcl5VhsPZraIyy3EkhuBXOKVayNW-UB--ZgFpwkNOxtpyTh_PcfewPo8NBt_0Yu7RSM8ZpyUqZzHNSnlU29ojReb2PYWfiSVPQU1i61b9h6SksDVwnllxPZ5dLDxyDixptcJ11TYjODrrpw7_-H2Zzc4k</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Adarchenko, V.A.</creator><creator>Panov, A.V.</creator><creator>Voronin, S.M.</creator><creator>Klebanov, I.I.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201909</creationdate><title>Group classification of dynamics equations of self-gravitating gas</title><author>Adarchenko, V.A. ; Panov, A.V. ; Voronin, S.M. ; Klebanov, I.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-64a62f91c56918ef75a20bfb0da8c4e7664c6ee8232b4d8f0ff260964070169c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Admitted group</topic><topic>Algebra</topic><topic>Classification</topic><topic>Equations of state</topic><topic>Equivalence transformations</topic><topic>Gravitation</topic><topic>Group classification</topic><topic>Group dynamics</topic><topic>Kernels</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Self-gravitating gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adarchenko, V.A.</creatorcontrib><creatorcontrib>Panov, A.V.</creatorcontrib><creatorcontrib>Voronin, S.M.</creatorcontrib><creatorcontrib>Klebanov, I.I.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adarchenko, V.A.</au><au>Panov, A.V.</au><au>Voronin, S.M.</au><au>Klebanov, I.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group classification of dynamics equations of self-gravitating gas</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2019-09</date><risdate>2019</risdate><volume>76</volume><spage>109</spage><epage>115</epage><pages>109-115</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•The group classification problem for self-gravitating gas is solved.•The kernel of symmetry algebras is found.•All specifications of the parameter are retrieved.•The extensions of the kernel for all specifications are presented.•A comparison with the group classification of gas dynamics is done.
In the paper, a group classification problem is solved for a system of equations which describes motion of self-gravitating gas. A parameter in group classification problem is a function which is determined by an equation of state. A kernel of Lie algebras admitted by the system and an algebra of equivalence transformations group are derived. All specifications of the parameter that lead to extensions of the kernel are found.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2019.04.016</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2019-09, Vol.76, p.109-115 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_journals_2241323782 |
source | Access via ScienceDirect (Elsevier) |
subjects | Admitted group Algebra Classification Equations of state Equivalence transformations Gravitation Group classification Group dynamics Kernels Lie groups Mathematical analysis Nonlinear equations Parameters Partial differential equations Self-gravitating gas |
title | Group classification of dynamics equations of self-gravitating gas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20classification%20of%20dynamics%20equations%20of%20self-gravitating%20gas&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Adarchenko,%20V.A.&rft.date=2019-09&rft.volume=76&rft.spage=109&rft.epage=115&rft.pages=109-115&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2019.04.016&rft_dat=%3Cproquest_cross%3E2241323782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2241323782&rft_id=info:pmid/&rft_els_id=S1007570419301273&rfr_iscdi=true |