SuperDARN Evidence for Convection‐Driven Lagrangian Coherent Structures in the Polar Ionosphere

Polar cap patches are large sporadic enhancements of plasma density on the scale of hundreds of kilometers, which can impact the performance of Global Navigation Satellite Systems. Lagrangian Coherent Structures (LCSs) are ridges that show areas of maximal separation in a time‐evolving flow. Previou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2019-05, Vol.124 (5), p.3573-3588
Hauptverfasser: Ramirez, U., Wang, Ningchao, Chartier, Alex T., Datta‐Barua, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3588
container_issue 5
container_start_page 3573
container_title Journal of geophysical research. Space physics
container_volume 124
creator Ramirez, U.
Wang, Ningchao
Chartier, Alex T.
Datta‐Barua, S.
description Polar cap patches are large sporadic enhancements of plasma density on the scale of hundreds of kilometers, which can impact the performance of Global Navigation Satellite Systems. Lagrangian Coherent Structures (LCSs) are ridges that show areas of maximal separation in a time‐evolving flow. Previous work based on modeled ionospheric flow showed that LCSs exist in the ionosphere and are barriers governing patch formation. In this work, we identify the first data‐driven LCSs in the high‐latitude ionosphere using Super Dual Auroral Radar Network (SuperDARN) ion convection fields. The LCSs found using the Ionosphere‐Thermosphere Algorithm for LCSs are compared during geomagnetically quiet and active periods. The shape of the LCS is found to be dependent on the electric potential pattern. A consistent two‐cell pattern results in a W‐shaped LCS, but when the two‐cell pattern breaks down, the LCS loses this characteristic shape. The changes in the electric potential, and thus the LCS, are likely due to changes in the interplanetary magnetic field. A comparison between LCSs obtained from empirical models and data reveal that the data‐driven LCSs are poleward of and have a shorter longitudinal span than the model‐based LCSs. A comparison of the LCS location and the formation of a polar cap patch on 17 March 2015 showed that the center of the patch developed from plasma on the main LCS ridge, and this is confirmed with a separate polar cap patch event from 26 September 2011. Key Points Lagrangian coherent structures (LCSs) exist in Super Dual Auroral Radar Network (SuperDARN) ionospheric plasma flows A two‐cell convection pattern results in a W‐shaped LCS, but when the two‐cell pattern breaks down the LCS loses its shape Analysis of two polar cap patches shows that the center of each patch originated from plasma on the main LCS ridge
doi_str_mv 10.1029/2018JA026225
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239953373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239953373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3076-1298537ac022a2cee56054b46026869512e599dc16bb80a9ba07e063d56695133</originalsourceid><addsrcrecordid>eNp9kM9OwkAQxjdGEwly8wE28Sq6f7rb7rEBRAhRA3putssAJbhbd1sMNx_BZ_RJbIMmnpzLTOb7Zb7Mh9AlJTeUMHXLCE2mKWGSMXGCOoxK1VcRYae_M0_IOeqFsCVNJc2Kig7Si7oEP0znD3i0L5ZgDeCV83jg7B5MVTj79fE59MUeLJ7ptdd2XWjbyBvwYCu8qHxtqtpDwIXF1Qbwk9tpjyfOulC20AU6W-ldgN5P76KXu9Hz4L4_exxPBumsbziJZZ8ylQgea0MY08wACElElEey-SiRSlAGQqmloTLPE6JVrkkMRPKlkK3KeRddHe-W3r3VEKps62pvG8uMMa6U4DxuqesjZbwLwcMqK33xqv0hoyRrc8z-5tjg_Ii_Fzs4_Mtm0_E8FVESS_4NAvpzAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239953373</pqid></control><display><type>article</type><title>SuperDARN Evidence for Convection‐Driven Lagrangian Coherent Structures in the Polar Ionosphere</title><source>Wiley Online Library</source><source>Wiley Online Library Free Content</source><creator>Ramirez, U. ; Wang, Ningchao ; Chartier, Alex T. ; Datta‐Barua, S.</creator><creatorcontrib>Ramirez, U. ; Wang, Ningchao ; Chartier, Alex T. ; Datta‐Barua, S.</creatorcontrib><description>Polar cap patches are large sporadic enhancements of plasma density on the scale of hundreds of kilometers, which can impact the performance of Global Navigation Satellite Systems. Lagrangian Coherent Structures (LCSs) are ridges that show areas of maximal separation in a time‐evolving flow. Previous work based on modeled ionospheric flow showed that LCSs exist in the ionosphere and are barriers governing patch formation. In this work, we identify the first data‐driven LCSs in the high‐latitude ionosphere using Super Dual Auroral Radar Network (SuperDARN) ion convection fields. The LCSs found using the Ionosphere‐Thermosphere Algorithm for LCSs are compared during geomagnetically quiet and active periods. The shape of the LCS is found to be dependent on the electric potential pattern. A consistent two‐cell pattern results in a W‐shaped LCS, but when the two‐cell pattern breaks down, the LCS loses this characteristic shape. The changes in the electric potential, and thus the LCS, are likely due to changes in the interplanetary magnetic field. A comparison between LCSs obtained from empirical models and data reveal that the data‐driven LCSs are poleward of and have a shorter longitudinal span than the model‐based LCSs. A comparison of the LCS location and the formation of a polar cap patch on 17 March 2015 showed that the center of the patch developed from plasma on the main LCS ridge, and this is confirmed with a separate polar cap patch event from 26 September 2011. Key Points Lagrangian coherent structures (LCSs) exist in Super Dual Auroral Radar Network (SuperDARN) ionospheric plasma flows A two‐cell convection pattern results in a W‐shaped LCS, but when the two‐cell pattern breaks down the LCS loses its shape Analysis of two polar cap patches shows that the center of each patch originated from plasma on the main LCS ridge</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1029/2018JA026225</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Convection ; Electric potential ; Empirical models ; Geomagnetism ; Interplanetary magnetic field ; Ionosphere ; Ionospheric models ; Magnetic fields ; Navigation satellites ; Navigation systems ; Plasma density ; Polar caps ; Polar ionosphere ; Radar ; Radar networks ; Thermosphere</subject><ispartof>Journal of geophysical research. Space physics, 2019-05, Vol.124 (5), p.3573-3588</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3076-1298537ac022a2cee56054b46026869512e599dc16bb80a9ba07e063d56695133</citedby><cites>FETCH-LOGICAL-c3076-1298537ac022a2cee56054b46026869512e599dc16bb80a9ba07e063d56695133</cites><orcidid>0000-0002-7685-5625 ; 0000-0003-1603-4283 ; 0000-0002-7346-5189 ; 0000-0002-4215-031X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JA026225$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JA026225$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Ramirez, U.</creatorcontrib><creatorcontrib>Wang, Ningchao</creatorcontrib><creatorcontrib>Chartier, Alex T.</creatorcontrib><creatorcontrib>Datta‐Barua, S.</creatorcontrib><title>SuperDARN Evidence for Convection‐Driven Lagrangian Coherent Structures in the Polar Ionosphere</title><title>Journal of geophysical research. Space physics</title><description>Polar cap patches are large sporadic enhancements of plasma density on the scale of hundreds of kilometers, which can impact the performance of Global Navigation Satellite Systems. Lagrangian Coherent Structures (LCSs) are ridges that show areas of maximal separation in a time‐evolving flow. Previous work based on modeled ionospheric flow showed that LCSs exist in the ionosphere and are barriers governing patch formation. In this work, we identify the first data‐driven LCSs in the high‐latitude ionosphere using Super Dual Auroral Radar Network (SuperDARN) ion convection fields. The LCSs found using the Ionosphere‐Thermosphere Algorithm for LCSs are compared during geomagnetically quiet and active periods. The shape of the LCS is found to be dependent on the electric potential pattern. A consistent two‐cell pattern results in a W‐shaped LCS, but when the two‐cell pattern breaks down, the LCS loses this characteristic shape. The changes in the electric potential, and thus the LCS, are likely due to changes in the interplanetary magnetic field. A comparison between LCSs obtained from empirical models and data reveal that the data‐driven LCSs are poleward of and have a shorter longitudinal span than the model‐based LCSs. A comparison of the LCS location and the formation of a polar cap patch on 17 March 2015 showed that the center of the patch developed from plasma on the main LCS ridge, and this is confirmed with a separate polar cap patch event from 26 September 2011. Key Points Lagrangian coherent structures (LCSs) exist in Super Dual Auroral Radar Network (SuperDARN) ionospheric plasma flows A two‐cell convection pattern results in a W‐shaped LCS, but when the two‐cell pattern breaks down the LCS loses its shape Analysis of two polar cap patches shows that the center of each patch originated from plasma on the main LCS ridge</description><subject>Algorithms</subject><subject>Convection</subject><subject>Electric potential</subject><subject>Empirical models</subject><subject>Geomagnetism</subject><subject>Interplanetary magnetic field</subject><subject>Ionosphere</subject><subject>Ionospheric models</subject><subject>Magnetic fields</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Plasma density</subject><subject>Polar caps</subject><subject>Polar ionosphere</subject><subject>Radar</subject><subject>Radar networks</subject><subject>Thermosphere</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwkAQxjdGEwly8wE28Sq6f7rb7rEBRAhRA3putssAJbhbd1sMNx_BZ_RJbIMmnpzLTOb7Zb7Mh9AlJTeUMHXLCE2mKWGSMXGCOoxK1VcRYae_M0_IOeqFsCVNJc2Kig7Si7oEP0znD3i0L5ZgDeCV83jg7B5MVTj79fE59MUeLJ7ptdd2XWjbyBvwYCu8qHxtqtpDwIXF1Qbwk9tpjyfOulC20AU6W-ldgN5P76KXu9Hz4L4_exxPBumsbziJZZ8ylQgea0MY08wACElElEey-SiRSlAGQqmloTLPE6JVrkkMRPKlkK3KeRddHe-W3r3VEKps62pvG8uMMa6U4DxuqesjZbwLwcMqK33xqv0hoyRrc8z-5tjg_Ii_Fzs4_Mtm0_E8FVESS_4NAvpzAg</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Ramirez, U.</creator><creator>Wang, Ningchao</creator><creator>Chartier, Alex T.</creator><creator>Datta‐Barua, S.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7685-5625</orcidid><orcidid>https://orcid.org/0000-0003-1603-4283</orcidid><orcidid>https://orcid.org/0000-0002-7346-5189</orcidid><orcidid>https://orcid.org/0000-0002-4215-031X</orcidid></search><sort><creationdate>201905</creationdate><title>SuperDARN Evidence for Convection‐Driven Lagrangian Coherent Structures in the Polar Ionosphere</title><author>Ramirez, U. ; Wang, Ningchao ; Chartier, Alex T. ; Datta‐Barua, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3076-1298537ac022a2cee56054b46026869512e599dc16bb80a9ba07e063d56695133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Convection</topic><topic>Electric potential</topic><topic>Empirical models</topic><topic>Geomagnetism</topic><topic>Interplanetary magnetic field</topic><topic>Ionosphere</topic><topic>Ionospheric models</topic><topic>Magnetic fields</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Plasma density</topic><topic>Polar caps</topic><topic>Polar ionosphere</topic><topic>Radar</topic><topic>Radar networks</topic><topic>Thermosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez, U.</creatorcontrib><creatorcontrib>Wang, Ningchao</creatorcontrib><creatorcontrib>Chartier, Alex T.</creatorcontrib><creatorcontrib>Datta‐Barua, S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez, U.</au><au>Wang, Ningchao</au><au>Chartier, Alex T.</au><au>Datta‐Barua, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SuperDARN Evidence for Convection‐Driven Lagrangian Coherent Structures in the Polar Ionosphere</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2019-05</date><risdate>2019</risdate><volume>124</volume><issue>5</issue><spage>3573</spage><epage>3588</epage><pages>3573-3588</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Polar cap patches are large sporadic enhancements of plasma density on the scale of hundreds of kilometers, which can impact the performance of Global Navigation Satellite Systems. Lagrangian Coherent Structures (LCSs) are ridges that show areas of maximal separation in a time‐evolving flow. Previous work based on modeled ionospheric flow showed that LCSs exist in the ionosphere and are barriers governing patch formation. In this work, we identify the first data‐driven LCSs in the high‐latitude ionosphere using Super Dual Auroral Radar Network (SuperDARN) ion convection fields. The LCSs found using the Ionosphere‐Thermosphere Algorithm for LCSs are compared during geomagnetically quiet and active periods. The shape of the LCS is found to be dependent on the electric potential pattern. A consistent two‐cell pattern results in a W‐shaped LCS, but when the two‐cell pattern breaks down, the LCS loses this characteristic shape. The changes in the electric potential, and thus the LCS, are likely due to changes in the interplanetary magnetic field. A comparison between LCSs obtained from empirical models and data reveal that the data‐driven LCSs are poleward of and have a shorter longitudinal span than the model‐based LCSs. A comparison of the LCS location and the formation of a polar cap patch on 17 March 2015 showed that the center of the patch developed from plasma on the main LCS ridge, and this is confirmed with a separate polar cap patch event from 26 September 2011. Key Points Lagrangian coherent structures (LCSs) exist in Super Dual Auroral Radar Network (SuperDARN) ionospheric plasma flows A two‐cell convection pattern results in a W‐shaped LCS, but when the two‐cell pattern breaks down the LCS loses its shape Analysis of two polar cap patches shows that the center of each patch originated from plasma on the main LCS ridge</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JA026225</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7685-5625</orcidid><orcidid>https://orcid.org/0000-0003-1603-4283</orcidid><orcidid>https://orcid.org/0000-0002-7346-5189</orcidid><orcidid>https://orcid.org/0000-0002-4215-031X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2019-05, Vol.124 (5), p.3573-3588
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_2239953373
source Wiley Online Library; Wiley Online Library Free Content
subjects Algorithms
Convection
Electric potential
Empirical models
Geomagnetism
Interplanetary magnetic field
Ionosphere
Ionospheric models
Magnetic fields
Navigation satellites
Navigation systems
Plasma density
Polar caps
Polar ionosphere
Radar
Radar networks
Thermosphere
title SuperDARN Evidence for Convection‐Driven Lagrangian Coherent Structures in the Polar Ionosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SuperDARN%20Evidence%20for%20Convection%E2%80%90Driven%20Lagrangian%20Coherent%20Structures%20in%20the%20Polar%20Ionosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Ramirez,%20U.&rft.date=2019-05&rft.volume=124&rft.issue=5&rft.spage=3573&rft.epage=3588&rft.pages=3573-3588&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1029/2018JA026225&rft_dat=%3Cproquest_cross%3E2239953373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239953373&rft_id=info:pmid/&rfr_iscdi=true