Bi-Level Multi-Objective Stochastic Linear Fractional Programming with General form of Distribution

This paper deals with the stochastic approach of bi-level multi-objective linear fractional programming problem.In this type of bi-level programming problem stochastic nature the right hand side resource vector is considered to follow a general form of distribution F (bi) = 1 − Bi^exp(Aih(bi))[13],...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics, optimization & information computing optimization & information computing, 2019, Vol.7 (2), p.407
Hauptverfasser: Kausar, Haneefa, Adhami, Ahmad Yusuf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 407
container_title Statistics, optimization & information computing
container_volume 7
creator Kausar, Haneefa
Adhami, Ahmad Yusuf
description This paper deals with the stochastic approach of bi-level multi-objective linear fractional programming problem.In this type of bi-level programming problem stochastic nature the right hand side resource vector is considered to follow a general form of distribution F (bi) = 1 − Bi^exp(Aih(bi))[13], which in itself includes many well known distributions such as Pareto distribution, Weibull distribution etc. After converting the problem into an equivalent deterministic form, each level of the problem is transformed into a single objective by using K-T conditions. Finally the problem is solved by Taylors series approach. A numerical example is also presented to illustrate how the proposed approach is utilized.
doi_str_mv 10.19139/soic.v7i2.373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239764072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239764072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-82dc9bb3d25e9650bded5a9d1a9d370495bd9f996d948e06cf7edb07b2dc3ae53</originalsourceid><addsrcrecordid>eNotkE1LAzEQhhdRsNRePQc875qPzaY5atUqrFRQwVvI17Ypu5uaZCv-e7eth2EG3meG4cmyawQLxBHht9E7XeyZwwVh5CybYIJgTiGD58cZ5RCWX5fZLMYthBAxSiuIJ5m-d3lt97YFr0ObXL5SW6uT21vwnrzeyJicBrXrrQzgKcgx8r1swVvw6yC7zvVr8OPSBixtb8MYND50wDfgwcUUnBoO_FV20cg22tl_n2afT48fi-e8Xi1fFnd1rtEcp3yOjeZKEYOp5RWFylhDJTdoLMJgyakyvOG8MrycW1jphlmjIFPjHpGWkml2c7q7C_57sDGJrR_C-G4UGBPOqhIyPFLFidLBxxhsI3bBdTL8CgTF0aU4uBQHl2J0Sf4AlvZqNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239764072</pqid></control><display><type>article</type><title>Bi-Level Multi-Objective Stochastic Linear Fractional Programming with General form of Distribution</title><source>EZB Electronic Journals Library</source><creator>Kausar, Haneefa ; Adhami, Ahmad Yusuf</creator><creatorcontrib>Kausar, Haneefa ; Adhami, Ahmad Yusuf</creatorcontrib><description>This paper deals with the stochastic approach of bi-level multi-objective linear fractional programming problem.In this type of bi-level programming problem stochastic nature the right hand side resource vector is considered to follow a general form of distribution F (bi) = 1 − Bi^exp(Aih(bi))[13], which in itself includes many well known distributions such as Pareto distribution, Weibull distribution etc. After converting the problem into an equivalent deterministic form, each level of the problem is transformed into a single objective by using K-T conditions. Finally the problem is solved by Taylors series approach. A numerical example is also presented to illustrate how the proposed approach is utilized.</description><identifier>ISSN: 2311-004X</identifier><identifier>EISSN: 2310-5070</identifier><identifier>DOI: 10.19139/soic.v7i2.373</identifier><language>eng</language><publisher>Hong Kong: International Academic Press (Hong Kong)</publisher><subject>Mathematical programming ; Multiple objective analysis ; Nonlinear programming ; Weibull distribution</subject><ispartof>Statistics, optimization &amp; information computing, 2019, Vol.7 (2), p.407</ispartof><rights>(c) 2019. This work is licensed under CC BY 3.0 Unported - https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c182t-82dc9bb3d25e9650bded5a9d1a9d370495bd9f996d948e06cf7edb07b2dc3ae53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Kausar, Haneefa</creatorcontrib><creatorcontrib>Adhami, Ahmad Yusuf</creatorcontrib><title>Bi-Level Multi-Objective Stochastic Linear Fractional Programming with General form of Distribution</title><title>Statistics, optimization &amp; information computing</title><description>This paper deals with the stochastic approach of bi-level multi-objective linear fractional programming problem.In this type of bi-level programming problem stochastic nature the right hand side resource vector is considered to follow a general form of distribution F (bi) = 1 − Bi^exp(Aih(bi))[13], which in itself includes many well known distributions such as Pareto distribution, Weibull distribution etc. After converting the problem into an equivalent deterministic form, each level of the problem is transformed into a single objective by using K-T conditions. Finally the problem is solved by Taylors series approach. A numerical example is also presented to illustrate how the proposed approach is utilized.</description><subject>Mathematical programming</subject><subject>Multiple objective analysis</subject><subject>Nonlinear programming</subject><subject>Weibull distribution</subject><issn>2311-004X</issn><issn>2310-5070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkE1LAzEQhhdRsNRePQc875qPzaY5atUqrFRQwVvI17Ypu5uaZCv-e7eth2EG3meG4cmyawQLxBHht9E7XeyZwwVh5CybYIJgTiGD58cZ5RCWX5fZLMYthBAxSiuIJ5m-d3lt97YFr0ObXL5SW6uT21vwnrzeyJicBrXrrQzgKcgx8r1swVvw6yC7zvVr8OPSBixtb8MYND50wDfgwcUUnBoO_FV20cg22tl_n2afT48fi-e8Xi1fFnd1rtEcp3yOjeZKEYOp5RWFylhDJTdoLMJgyakyvOG8MrycW1jphlmjIFPjHpGWkml2c7q7C_57sDGJrR_C-G4UGBPOqhIyPFLFidLBxxhsI3bBdTL8CgTF0aU4uBQHl2J0Sf4AlvZqNQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kausar, Haneefa</creator><creator>Adhami, Ahmad Yusuf</creator><general>International Academic Press (Hong Kong)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2019</creationdate><title>Bi-Level Multi-Objective Stochastic Linear Fractional Programming with General form of Distribution</title><author>Kausar, Haneefa ; Adhami, Ahmad Yusuf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-82dc9bb3d25e9650bded5a9d1a9d370495bd9f996d948e06cf7edb07b2dc3ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematical programming</topic><topic>Multiple objective analysis</topic><topic>Nonlinear programming</topic><topic>Weibull distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Kausar, Haneefa</creatorcontrib><creatorcontrib>Adhami, Ahmad Yusuf</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Library Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Statistics, optimization &amp; information computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kausar, Haneefa</au><au>Adhami, Ahmad Yusuf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi-Level Multi-Objective Stochastic Linear Fractional Programming with General form of Distribution</atitle><jtitle>Statistics, optimization &amp; information computing</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>407</spage><pages>407-</pages><issn>2311-004X</issn><eissn>2310-5070</eissn><abstract>This paper deals with the stochastic approach of bi-level multi-objective linear fractional programming problem.In this type of bi-level programming problem stochastic nature the right hand side resource vector is considered to follow a general form of distribution F (bi) = 1 − Bi^exp(Aih(bi))[13], which in itself includes many well known distributions such as Pareto distribution, Weibull distribution etc. After converting the problem into an equivalent deterministic form, each level of the problem is transformed into a single objective by using K-T conditions. Finally the problem is solved by Taylors series approach. A numerical example is also presented to illustrate how the proposed approach is utilized.</abstract><cop>Hong Kong</cop><pub>International Academic Press (Hong Kong)</pub><doi>10.19139/soic.v7i2.373</doi></addata></record>
fulltext fulltext
identifier ISSN: 2311-004X
ispartof Statistics, optimization & information computing, 2019, Vol.7 (2), p.407
issn 2311-004X
2310-5070
language eng
recordid cdi_proquest_journals_2239764072
source EZB Electronic Journals Library
subjects Mathematical programming
Multiple objective analysis
Nonlinear programming
Weibull distribution
title Bi-Level Multi-Objective Stochastic Linear Fractional Programming with General form of Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi-Level%20Multi-Objective%20Stochastic%20Linear%20Fractional%20Programming%20with%20General%20form%20of%20Distribution&rft.jtitle=Statistics,%20optimization%20&%20information%20computing&rft.au=Kausar,%20Haneefa&rft.date=2019&rft.volume=7&rft.issue=2&rft.spage=407&rft.pages=407-&rft.issn=2311-004X&rft.eissn=2310-5070&rft_id=info:doi/10.19139/soic.v7i2.373&rft_dat=%3Cproquest_cross%3E2239764072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239764072&rft_id=info:pmid/&rfr_iscdi=true