Optimal Load Management in a Shipyard Drydock

With the proliferation of enabling smart grid technologies, industries are increasingly looking to reduce their electricity costs through the adoption of renewable energy sources and efficient load management strategies. In this context, the realization of lower electricity costs requires the design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2019-06, Vol.15 (6), p.3277-3288
Hauptverfasser: Krishnan, Ashok, Foo, Y. S. Eddy, Gooi, Hoay Beng, Wang, Mingqiang, Huat, Cheah Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3288
container_issue 6
container_start_page 3277
container_title IEEE transactions on industrial informatics
container_volume 15
creator Krishnan, Ashok
Foo, Y. S. Eddy
Gooi, Hoay Beng
Wang, Mingqiang
Huat, Cheah Peng
description With the proliferation of enabling smart grid technologies, industries are increasingly looking to reduce their electricity costs through the adoption of renewable energy sources and efficient load management strategies. In this context, the realization of lower electricity costs requires the design of efficient energy management systems (EMSs). An EMS needs to factor in the unique operational requirements of the industry for which it is designed. Consequently, there has been a lot of research interest in designing EMSs for various industrial applications. However, the existing EMS formulations and models are not suitable for a shipyard drydock. Shipyard drydocks may be treated as grid-connected microgrids containing pump loads, interruptible loads, critical loads and heterogeneous generation sources. This paper proposes three modules, which can constitute a shipyard drydock energy management system (SEMS). A load forecasting module generates short term and medium term load forecasts using historical load demand data and ship arrival schedules as inputs. A multilayer feed-forward neural network with backpropagation is used to perform the load forecasting. A contracted capacity optimization module uses the medium term load forecast to find the optimal contracted capacity for the drydock. The short term load forecast and the optimal contracted capacity are used by an optimal scheduling module to reduce the total electricity cost incurred by the shipyard drydock. Case studies performed using data from a local shipyard demonstrate the efficacies of the proposed load forecasting and optimal scheduling modules in improving the accuracies of the load forecasts and reducing the overall electricity cost, respectively.
doi_str_mv 10.1109/TII.2018.2877703
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2239678340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8502808</ieee_id><sourcerecordid>2239678340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5bc6d5f851da9428fdb422e0128c90121f9fa5dcd944bca4255e4b89dd56ed603</originalsourceid><addsrcrecordid>eNo9kLtPwzAQhy0EEqWwI7FEYk44vxJ7ROUVKagDZbYcPyClTYKTDvnvcdSK5e6G73en-xC6xZBhDPJhU5YZASwyIoqiAHqGFlgynAJwOI8z5zilBOgluhqGLQCNjFygdN2PzV7vkqrTNnnXrf5ye9eOSdMmOvn4bvpJB5s8hcl25ucaXXi9G9zNqS_R58vzZvWWVuvXcvVYpYZIPKa8NrnlXnBstWREeFszQhxgIoyMFXvpNbfGSsZqoxnh3LFaSGt57mwOdInuj3v70P0e3DCqbXcIbTypCKEyLwRlMwVHyoRuGILzqg_xlzApDGqWoqIUNUtRJykxcneMNM65f1xwIAIE_QOtHluQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239678340</pqid></control><display><type>article</type><title>Optimal Load Management in a Shipyard Drydock</title><source>IEEE Electronic Library (IEL)</source><creator>Krishnan, Ashok ; Foo, Y. S. Eddy ; Gooi, Hoay Beng ; Wang, Mingqiang ; Huat, Cheah Peng</creator><creatorcontrib>Krishnan, Ashok ; Foo, Y. S. Eddy ; Gooi, Hoay Beng ; Wang, Mingqiang ; Huat, Cheah Peng</creatorcontrib><description>With the proliferation of enabling smart grid technologies, industries are increasingly looking to reduce their electricity costs through the adoption of renewable energy sources and efficient load management strategies. In this context, the realization of lower electricity costs requires the design of efficient energy management systems (EMSs). An EMS needs to factor in the unique operational requirements of the industry for which it is designed. Consequently, there has been a lot of research interest in designing EMSs for various industrial applications. However, the existing EMS formulations and models are not suitable for a shipyard drydock. Shipyard drydocks may be treated as grid-connected microgrids containing pump loads, interruptible loads, critical loads and heterogeneous generation sources. This paper proposes three modules, which can constitute a shipyard drydock energy management system (SEMS). A load forecasting module generates short term and medium term load forecasts using historical load demand data and ship arrival schedules as inputs. A multilayer feed-forward neural network with backpropagation is used to perform the load forecasting. A contracted capacity optimization module uses the medium term load forecast to find the optimal contracted capacity for the drydock. The short term load forecast and the optimal contracted capacity are used by an optimal scheduling module to reduce the total electricity cost incurred by the shipyard drydock. Case studies performed using data from a local shipyard demonstrate the efficacies of the proposed load forecasting and optimal scheduling modules in improving the accuracies of the load forecasts and reducing the overall electricity cost, respectively.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2877703</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Back propagation ; Contracted capacity optimization ; Dry docks ; Electric power grids ; Electrical loads ; Electricity consumption ; Electricity pricing ; Energy costs ; Energy management ; energy management system ; Energy management systems ; Forecasting ; Formulations ; Industrial applications ; interruptible loads ; Job shop scheduling ; Load ; Load forecasting ; Load management ; Marine vehicles ; Modules ; Multilayers ; Neural networks ; Optimal scheduling ; Optimization ; pump scheduling optimization ; Renewable energy sources ; Schedules ; Scheduling ; shipyard drydock ; Shipyards ; Smart grid ; Smart grid technology</subject><ispartof>IEEE transactions on industrial informatics, 2019-06, Vol.15 (6), p.3277-3288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5bc6d5f851da9428fdb422e0128c90121f9fa5dcd944bca4255e4b89dd56ed603</citedby><cites>FETCH-LOGICAL-c291t-5bc6d5f851da9428fdb422e0128c90121f9fa5dcd944bca4255e4b89dd56ed603</cites><orcidid>0000-0002-8741-7962 ; 0000-0002-5983-2181 ; 0000-0002-1663-3473 ; 0000-0003-0034-0155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8502808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8502808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krishnan, Ashok</creatorcontrib><creatorcontrib>Foo, Y. S. Eddy</creatorcontrib><creatorcontrib>Gooi, Hoay Beng</creatorcontrib><creatorcontrib>Wang, Mingqiang</creatorcontrib><creatorcontrib>Huat, Cheah Peng</creatorcontrib><title>Optimal Load Management in a Shipyard Drydock</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>With the proliferation of enabling smart grid technologies, industries are increasingly looking to reduce their electricity costs through the adoption of renewable energy sources and efficient load management strategies. In this context, the realization of lower electricity costs requires the design of efficient energy management systems (EMSs). An EMS needs to factor in the unique operational requirements of the industry for which it is designed. Consequently, there has been a lot of research interest in designing EMSs for various industrial applications. However, the existing EMS formulations and models are not suitable for a shipyard drydock. Shipyard drydocks may be treated as grid-connected microgrids containing pump loads, interruptible loads, critical loads and heterogeneous generation sources. This paper proposes three modules, which can constitute a shipyard drydock energy management system (SEMS). A load forecasting module generates short term and medium term load forecasts using historical load demand data and ship arrival schedules as inputs. A multilayer feed-forward neural network with backpropagation is used to perform the load forecasting. A contracted capacity optimization module uses the medium term load forecast to find the optimal contracted capacity for the drydock. The short term load forecast and the optimal contracted capacity are used by an optimal scheduling module to reduce the total electricity cost incurred by the shipyard drydock. Case studies performed using data from a local shipyard demonstrate the efficacies of the proposed load forecasting and optimal scheduling modules in improving the accuracies of the load forecasts and reducing the overall electricity cost, respectively.</description><subject>Back propagation</subject><subject>Contracted capacity optimization</subject><subject>Dry docks</subject><subject>Electric power grids</subject><subject>Electrical loads</subject><subject>Electricity consumption</subject><subject>Electricity pricing</subject><subject>Energy costs</subject><subject>Energy management</subject><subject>energy management system</subject><subject>Energy management systems</subject><subject>Forecasting</subject><subject>Formulations</subject><subject>Industrial applications</subject><subject>interruptible loads</subject><subject>Job shop scheduling</subject><subject>Load</subject><subject>Load forecasting</subject><subject>Load management</subject><subject>Marine vehicles</subject><subject>Modules</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>pump scheduling optimization</subject><subject>Renewable energy sources</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>shipyard drydock</subject><subject>Shipyards</subject><subject>Smart grid</subject><subject>Smart grid technology</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLtPwzAQhy0EEqWwI7FEYk44vxJ7ROUVKagDZbYcPyClTYKTDvnvcdSK5e6G73en-xC6xZBhDPJhU5YZASwyIoqiAHqGFlgynAJwOI8z5zilBOgluhqGLQCNjFygdN2PzV7vkqrTNnnXrf5ye9eOSdMmOvn4bvpJB5s8hcl25ucaXXi9G9zNqS_R58vzZvWWVuvXcvVYpYZIPKa8NrnlXnBstWREeFszQhxgIoyMFXvpNbfGSsZqoxnh3LFaSGt57mwOdInuj3v70P0e3DCqbXcIbTypCKEyLwRlMwVHyoRuGILzqg_xlzApDGqWoqIUNUtRJykxcneMNM65f1xwIAIE_QOtHluQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Krishnan, Ashok</creator><creator>Foo, Y. S. Eddy</creator><creator>Gooi, Hoay Beng</creator><creator>Wang, Mingqiang</creator><creator>Huat, Cheah Peng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8741-7962</orcidid><orcidid>https://orcid.org/0000-0002-5983-2181</orcidid><orcidid>https://orcid.org/0000-0002-1663-3473</orcidid><orcidid>https://orcid.org/0000-0003-0034-0155</orcidid></search><sort><creationdate>20190601</creationdate><title>Optimal Load Management in a Shipyard Drydock</title><author>Krishnan, Ashok ; Foo, Y. S. Eddy ; Gooi, Hoay Beng ; Wang, Mingqiang ; Huat, Cheah Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5bc6d5f851da9428fdb422e0128c90121f9fa5dcd944bca4255e4b89dd56ed603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Back propagation</topic><topic>Contracted capacity optimization</topic><topic>Dry docks</topic><topic>Electric power grids</topic><topic>Electrical loads</topic><topic>Electricity consumption</topic><topic>Electricity pricing</topic><topic>Energy costs</topic><topic>Energy management</topic><topic>energy management system</topic><topic>Energy management systems</topic><topic>Forecasting</topic><topic>Formulations</topic><topic>Industrial applications</topic><topic>interruptible loads</topic><topic>Job shop scheduling</topic><topic>Load</topic><topic>Load forecasting</topic><topic>Load management</topic><topic>Marine vehicles</topic><topic>Modules</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>pump scheduling optimization</topic><topic>Renewable energy sources</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>shipyard drydock</topic><topic>Shipyards</topic><topic>Smart grid</topic><topic>Smart grid technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Ashok</creatorcontrib><creatorcontrib>Foo, Y. S. Eddy</creatorcontrib><creatorcontrib>Gooi, Hoay Beng</creatorcontrib><creatorcontrib>Wang, Mingqiang</creatorcontrib><creatorcontrib>Huat, Cheah Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnan, Ashok</au><au>Foo, Y. S. Eddy</au><au>Gooi, Hoay Beng</au><au>Wang, Mingqiang</au><au>Huat, Cheah Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Load Management in a Shipyard Drydock</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>15</volume><issue>6</issue><spage>3277</spage><epage>3288</epage><pages>3277-3288</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>With the proliferation of enabling smart grid technologies, industries are increasingly looking to reduce their electricity costs through the adoption of renewable energy sources and efficient load management strategies. In this context, the realization of lower electricity costs requires the design of efficient energy management systems (EMSs). An EMS needs to factor in the unique operational requirements of the industry for which it is designed. Consequently, there has been a lot of research interest in designing EMSs for various industrial applications. However, the existing EMS formulations and models are not suitable for a shipyard drydock. Shipyard drydocks may be treated as grid-connected microgrids containing pump loads, interruptible loads, critical loads and heterogeneous generation sources. This paper proposes three modules, which can constitute a shipyard drydock energy management system (SEMS). A load forecasting module generates short term and medium term load forecasts using historical load demand data and ship arrival schedules as inputs. A multilayer feed-forward neural network with backpropagation is used to perform the load forecasting. A contracted capacity optimization module uses the medium term load forecast to find the optimal contracted capacity for the drydock. The short term load forecast and the optimal contracted capacity are used by an optimal scheduling module to reduce the total electricity cost incurred by the shipyard drydock. Case studies performed using data from a local shipyard demonstrate the efficacies of the proposed load forecasting and optimal scheduling modules in improving the accuracies of the load forecasts and reducing the overall electricity cost, respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2877703</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8741-7962</orcidid><orcidid>https://orcid.org/0000-0002-5983-2181</orcidid><orcidid>https://orcid.org/0000-0002-1663-3473</orcidid><orcidid>https://orcid.org/0000-0003-0034-0155</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2019-06, Vol.15 (6), p.3277-3288
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2239678340
source IEEE Electronic Library (IEL)
subjects Back propagation
Contracted capacity optimization
Dry docks
Electric power grids
Electrical loads
Electricity consumption
Electricity pricing
Energy costs
Energy management
energy management system
Energy management systems
Forecasting
Formulations
Industrial applications
interruptible loads
Job shop scheduling
Load
Load forecasting
Load management
Marine vehicles
Modules
Multilayers
Neural networks
Optimal scheduling
Optimization
pump scheduling optimization
Renewable energy sources
Schedules
Scheduling
shipyard drydock
Shipyards
Smart grid
Smart grid technology
title Optimal Load Management in a Shipyard Drydock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A19%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Load%20Management%20in%20a%20Shipyard%20Drydock&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Krishnan,%20Ashok&rft.date=2019-06-01&rft.volume=15&rft.issue=6&rft.spage=3277&rft.epage=3288&rft.pages=3277-3288&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2877703&rft_dat=%3Cproquest_RIE%3E2239678340%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239678340&rft_id=info:pmid/&rft_ieee_id=8502808&rfr_iscdi=true