Time response in carbon nanotube/Si based photodetectors

Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector. [Display omitted] •Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2019-06, Vol.292, p.71-76
Hauptverfasser: Salvato, M., Scagliotti, M., De Crescenzi, M., Boscardin, M., Attanasio, C., Avallone, G., Cirillo, C., Prosposito, P., De Matteis, F., Messi, R., Castrucci, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue
container_start_page 71
container_title Sensors and actuators. A. Physical.
container_volume 292
creator Salvato, M.
Scagliotti, M.
De Crescenzi, M.
Boscardin, M.
Attanasio, C.
Avallone, G.
Cirillo, C.
Prosposito, P.
De Matteis, F.
Messi, R.
Castrucci, P.
description Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector. [Display omitted] •Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n-Si photodetectors. We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers.
doi_str_mv 10.1016/j.sna.2019.04.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239636255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424719301931</els_id><sourcerecordid>2239636255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8386e2b7f232f45271e106ddd7579594fff150238781c6f2f65806035ef7c6dd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz-1Ovls8yeIXLHhwPYc2nWCKm6xJV_DfG1nPnubyPu_MPIRcU2goULWamhz6hgHtGhANgDghC9pqXnNQ3SlZQMdELZjQ5-Qi5wkAONd6Qdqt32GVMO9jyFj5UNk-DTFUoQ9xPgy4evXV0Gccq_17nOOIM9o5pnxJzlz_kfHqby7J28P9dv1Ub14en9d3m9py1c51y1uFbNCOceaEZJoiBTWOo5a6k51wzlEJjLe6pVY55pRsQQGX6LQtOb4kN8fefYqfB8yzmeIhhbLSMMY7xRWTsqToMWVTzDmhM_vkd336NhTMryAzmSLI_AoyIEwRVJjbI4Pl_C-PyWTrMVgcfSo_mjH6f-gfMxpsVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239636255</pqid></control><display><type>article</type><title>Time response in carbon nanotube/Si based photodetectors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Salvato, M. ; Scagliotti, M. ; De Crescenzi, M. ; Boscardin, M. ; Attanasio, C. ; Avallone, G. ; Cirillo, C. ; Prosposito, P. ; De Matteis, F. ; Messi, R. ; Castrucci, P.</creator><creatorcontrib>Salvato, M. ; Scagliotti, M. ; De Crescenzi, M. ; Boscardin, M. ; Attanasio, C. ; Avallone, G. ; Cirillo, C. ; Prosposito, P. ; De Matteis, F. ; Messi, R. ; Castrucci, P.</creatorcontrib><description>Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector. [Display omitted] •Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n-Si photodetectors. We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2019.04.004</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Avalanches ; Carbon ; Carbon nanotubes ; Current voltage characteristics ; Dependence ; Junction ; Nanotubes ; Photodetector ; Photoelectric effect ; Photoelectric emission ; Photometers ; Photomultiplier tubes ; Photovoltaic cells ; Pulsed laser ; Time response</subject><ispartof>Sensors and actuators. A. Physical., 2019-06, Vol.292, p.71-76</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8386e2b7f232f45271e106ddd7579594fff150238781c6f2f65806035ef7c6dd3</citedby><cites>FETCH-LOGICAL-c368t-8386e2b7f232f45271e106ddd7579594fff150238781c6f2f65806035ef7c6dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2019.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Salvato, M.</creatorcontrib><creatorcontrib>Scagliotti, M.</creatorcontrib><creatorcontrib>De Crescenzi, M.</creatorcontrib><creatorcontrib>Boscardin, M.</creatorcontrib><creatorcontrib>Attanasio, C.</creatorcontrib><creatorcontrib>Avallone, G.</creatorcontrib><creatorcontrib>Cirillo, C.</creatorcontrib><creatorcontrib>Prosposito, P.</creatorcontrib><creatorcontrib>De Matteis, F.</creatorcontrib><creatorcontrib>Messi, R.</creatorcontrib><creatorcontrib>Castrucci, P.</creatorcontrib><title>Time response in carbon nanotube/Si based photodetectors</title><title>Sensors and actuators. A. Physical.</title><description>Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector. [Display omitted] •Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n-Si photodetectors. We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers.</description><subject>Avalanches</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Current voltage characteristics</subject><subject>Dependence</subject><subject>Junction</subject><subject>Nanotubes</subject><subject>Photodetector</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photometers</subject><subject>Photomultiplier tubes</subject><subject>Photovoltaic cells</subject><subject>Pulsed laser</subject><subject>Time response</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz-1Ovls8yeIXLHhwPYc2nWCKm6xJV_DfG1nPnubyPu_MPIRcU2goULWamhz6hgHtGhANgDghC9pqXnNQ3SlZQMdELZjQ5-Qi5wkAONd6Qdqt32GVMO9jyFj5UNk-DTFUoQ9xPgy4evXV0Gccq_17nOOIM9o5pnxJzlz_kfHqby7J28P9dv1Ub14en9d3m9py1c51y1uFbNCOceaEZJoiBTWOo5a6k51wzlEJjLe6pVY55pRsQQGX6LQtOb4kN8fefYqfB8yzmeIhhbLSMMY7xRWTsqToMWVTzDmhM_vkd336NhTMryAzmSLI_AoyIEwRVJjbI4Pl_C-PyWTrMVgcfSo_mjH6f-gfMxpsVg</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Salvato, M.</creator><creator>Scagliotti, M.</creator><creator>De Crescenzi, M.</creator><creator>Boscardin, M.</creator><creator>Attanasio, C.</creator><creator>Avallone, G.</creator><creator>Cirillo, C.</creator><creator>Prosposito, P.</creator><creator>De Matteis, F.</creator><creator>Messi, R.</creator><creator>Castrucci, P.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20190615</creationdate><title>Time response in carbon nanotube/Si based photodetectors</title><author>Salvato, M. ; Scagliotti, M. ; De Crescenzi, M. ; Boscardin, M. ; Attanasio, C. ; Avallone, G. ; Cirillo, C. ; Prosposito, P. ; De Matteis, F. ; Messi, R. ; Castrucci, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8386e2b7f232f45271e106ddd7579594fff150238781c6f2f65806035ef7c6dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Avalanches</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Current voltage characteristics</topic><topic>Dependence</topic><topic>Junction</topic><topic>Nanotubes</topic><topic>Photodetector</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photometers</topic><topic>Photomultiplier tubes</topic><topic>Photovoltaic cells</topic><topic>Pulsed laser</topic><topic>Time response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvato, M.</creatorcontrib><creatorcontrib>Scagliotti, M.</creatorcontrib><creatorcontrib>De Crescenzi, M.</creatorcontrib><creatorcontrib>Boscardin, M.</creatorcontrib><creatorcontrib>Attanasio, C.</creatorcontrib><creatorcontrib>Avallone, G.</creatorcontrib><creatorcontrib>Cirillo, C.</creatorcontrib><creatorcontrib>Prosposito, P.</creatorcontrib><creatorcontrib>De Matteis, F.</creatorcontrib><creatorcontrib>Messi, R.</creatorcontrib><creatorcontrib>Castrucci, P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvato, M.</au><au>Scagliotti, M.</au><au>De Crescenzi, M.</au><au>Boscardin, M.</au><au>Attanasio, C.</au><au>Avallone, G.</au><au>Cirillo, C.</au><au>Prosposito, P.</au><au>De Matteis, F.</au><au>Messi, R.</au><au>Castrucci, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time response in carbon nanotube/Si based photodetectors</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>292</volume><spage>71</spage><epage>76</epage><pages>71-76</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector. [Display omitted] •Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n-Si photodetectors. We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2019.04.004</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2019-06, Vol.292, p.71-76
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_2239636255
source Elsevier ScienceDirect Journals Complete
subjects Avalanches
Carbon
Carbon nanotubes
Current voltage characteristics
Dependence
Junction
Nanotubes
Photodetector
Photoelectric effect
Photoelectric emission
Photometers
Photomultiplier tubes
Photovoltaic cells
Pulsed laser
Time response
title Time response in carbon nanotube/Si based photodetectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20response%20in%20carbon%20nanotube/Si%20based%20photodetectors&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Salvato,%20M.&rft.date=2019-06-15&rft.volume=292&rft.spage=71&rft.epage=76&rft.pages=71-76&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2019.04.004&rft_dat=%3Cproquest_cross%3E2239636255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239636255&rft_id=info:pmid/&rft_els_id=S0924424719301931&rfr_iscdi=true