Time response in carbon nanotube/Si based photodetectors
Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector. [Display omitted] •Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. A. Physical. 2019-06, Vol.292, p.71-76 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | |
container_start_page | 71 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 292 |
creator | Salvato, M. Scagliotti, M. De Crescenzi, M. Boscardin, M. Attanasio, C. Avallone, G. Cirillo, C. Prosposito, P. De Matteis, F. Messi, R. Castrucci, P. |
description | Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector.
[Display omitted]
•Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n-Si photodetectors.
We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers. |
doi_str_mv | 10.1016/j.sna.2019.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239636255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424719301931</els_id><sourcerecordid>2239636255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-8386e2b7f232f45271e106ddd7579594fff150238781c6f2f65806035ef7c6dd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz-1Ovls8yeIXLHhwPYc2nWCKm6xJV_DfG1nPnubyPu_MPIRcU2goULWamhz6hgHtGhANgDghC9pqXnNQ3SlZQMdELZjQ5-Qi5wkAONd6Qdqt32GVMO9jyFj5UNk-DTFUoQ9xPgy4evXV0Gccq_17nOOIM9o5pnxJzlz_kfHqby7J28P9dv1Ub14en9d3m9py1c51y1uFbNCOceaEZJoiBTWOo5a6k51wzlEJjLe6pVY55pRsQQGX6LQtOb4kN8fefYqfB8yzmeIhhbLSMMY7xRWTsqToMWVTzDmhM_vkd336NhTMryAzmSLI_AoyIEwRVJjbI4Pl_C-PyWTrMVgcfSo_mjH6f-gfMxpsVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239636255</pqid></control><display><type>article</type><title>Time response in carbon nanotube/Si based photodetectors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Salvato, M. ; Scagliotti, M. ; De Crescenzi, M. ; Boscardin, M. ; Attanasio, C. ; Avallone, G. ; Cirillo, C. ; Prosposito, P. ; De Matteis, F. ; Messi, R. ; Castrucci, P.</creator><creatorcontrib>Salvato, M. ; Scagliotti, M. ; De Crescenzi, M. ; Boscardin, M. ; Attanasio, C. ; Avallone, G. ; Cirillo, C. ; Prosposito, P. ; De Matteis, F. ; Messi, R. ; Castrucci, P.</creatorcontrib><description>Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector.
[Display omitted]
•Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n-Si photodetectors.
We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2019.04.004</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Avalanches ; Carbon ; Carbon nanotubes ; Current voltage characteristics ; Dependence ; Junction ; Nanotubes ; Photodetector ; Photoelectric effect ; Photoelectric emission ; Photometers ; Photomultiplier tubes ; Photovoltaic cells ; Pulsed laser ; Time response</subject><ispartof>Sensors and actuators. A. Physical., 2019-06, Vol.292, p.71-76</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-8386e2b7f232f45271e106ddd7579594fff150238781c6f2f65806035ef7c6dd3</citedby><cites>FETCH-LOGICAL-c368t-8386e2b7f232f45271e106ddd7579594fff150238781c6f2f65806035ef7c6dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sna.2019.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Salvato, M.</creatorcontrib><creatorcontrib>Scagliotti, M.</creatorcontrib><creatorcontrib>De Crescenzi, M.</creatorcontrib><creatorcontrib>Boscardin, M.</creatorcontrib><creatorcontrib>Attanasio, C.</creatorcontrib><creatorcontrib>Avallone, G.</creatorcontrib><creatorcontrib>Cirillo, C.</creatorcontrib><creatorcontrib>Prosposito, P.</creatorcontrib><creatorcontrib>De Matteis, F.</creatorcontrib><creatorcontrib>Messi, R.</creatorcontrib><creatorcontrib>Castrucci, P.</creatorcontrib><title>Time response in carbon nanotube/Si based photodetectors</title><title>Sensors and actuators. A. Physical.</title><description>Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector.
[Display omitted]
•Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n-Si photodetectors.
We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers.</description><subject>Avalanches</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Current voltage characteristics</subject><subject>Dependence</subject><subject>Junction</subject><subject>Nanotubes</subject><subject>Photodetector</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photometers</subject><subject>Photomultiplier tubes</subject><subject>Photovoltaic cells</subject><subject>Pulsed laser</subject><subject>Time response</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz-1Ovls8yeIXLHhwPYc2nWCKm6xJV_DfG1nPnubyPu_MPIRcU2goULWamhz6hgHtGhANgDghC9pqXnNQ3SlZQMdELZjQ5-Qi5wkAONd6Qdqt32GVMO9jyFj5UNk-DTFUoQ9xPgy4evXV0Gccq_17nOOIM9o5pnxJzlz_kfHqby7J28P9dv1Ub14en9d3m9py1c51y1uFbNCOceaEZJoiBTWOo5a6k51wzlEJjLe6pVY55pRsQQGX6LQtOb4kN8fefYqfB8yzmeIhhbLSMMY7xRWTsqToMWVTzDmhM_vkd336NhTMryAzmSLI_AoyIEwRVJjbI4Pl_C-PyWTrMVgcfSo_mjH6f-gfMxpsVg</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Salvato, M.</creator><creator>Scagliotti, M.</creator><creator>De Crescenzi, M.</creator><creator>Boscardin, M.</creator><creator>Attanasio, C.</creator><creator>Avallone, G.</creator><creator>Cirillo, C.</creator><creator>Prosposito, P.</creator><creator>De Matteis, F.</creator><creator>Messi, R.</creator><creator>Castrucci, P.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20190615</creationdate><title>Time response in carbon nanotube/Si based photodetectors</title><author>Salvato, M. ; Scagliotti, M. ; De Crescenzi, M. ; Boscardin, M. ; Attanasio, C. ; Avallone, G. ; Cirillo, C. ; Prosposito, P. ; De Matteis, F. ; Messi, R. ; Castrucci, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-8386e2b7f232f45271e106ddd7579594fff150238781c6f2f65806035ef7c6dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Avalanches</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Current voltage characteristics</topic><topic>Dependence</topic><topic>Junction</topic><topic>Nanotubes</topic><topic>Photodetector</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photometers</topic><topic>Photomultiplier tubes</topic><topic>Photovoltaic cells</topic><topic>Pulsed laser</topic><topic>Time response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvato, M.</creatorcontrib><creatorcontrib>Scagliotti, M.</creatorcontrib><creatorcontrib>De Crescenzi, M.</creatorcontrib><creatorcontrib>Boscardin, M.</creatorcontrib><creatorcontrib>Attanasio, C.</creatorcontrib><creatorcontrib>Avallone, G.</creatorcontrib><creatorcontrib>Cirillo, C.</creatorcontrib><creatorcontrib>Prosposito, P.</creatorcontrib><creatorcontrib>De Matteis, F.</creatorcontrib><creatorcontrib>Messi, R.</creatorcontrib><creatorcontrib>Castrucci, P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvato, M.</au><au>Scagliotti, M.</au><au>De Crescenzi, M.</au><au>Boscardin, M.</au><au>Attanasio, C.</au><au>Avallone, G.</au><au>Cirillo, C.</au><au>Prosposito, P.</au><au>De Matteis, F.</au><au>Messi, R.</au><au>Castrucci, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time response in carbon nanotube/Si based photodetectors</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>292</volume><spage>71</spage><epage>76</epage><pages>71-76</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>Photocurrent amplification by gate effect in a three terminal carbon nanotube /n-Si photodetector.
[Display omitted]
•Three terminal Carbon Nanotube/n-Si photodetectors.•Time response to nanosecond laser pulse.•Collecting photocharges by interdigitated electrodes.•Voltage doping in carbon nanotube/n-Si photodetectors.
We investigated the response of carbon nanotube/Si photodetectors to nanosecond light pulse using two electrode configurations for photovoltaic and photoconductive operations. When operating in photovoltaic mode, the devices show a linear dependence of the photocurrent as a function of the light pulse energy with rise time of 20 ns. In photoconductive mode, an increase of the maximum photocurrent as high as 30 times and a gain in the number of photogenerated charges up to 200% is recorded with a correspondent decrease in the time response below 10 ns. Current voltage characteristics measured as a function of the temperature indicate that the fast response of these devices can be ascribed to the formation of Schottky junctions at carbon nanotube/Si interface. These results make our devices comparable to most commercial photodetectors and pave the way for their use as avalanche photomultipliers.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2019.04.004</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2019-06, Vol.292, p.71-76 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_journals_2239636255 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Avalanches Carbon Carbon nanotubes Current voltage characteristics Dependence Junction Nanotubes Photodetector Photoelectric effect Photoelectric emission Photometers Photomultiplier tubes Photovoltaic cells Pulsed laser Time response |
title | Time response in carbon nanotube/Si based photodetectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20response%20in%20carbon%20nanotube/Si%20based%20photodetectors&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Salvato,%20M.&rft.date=2019-06-15&rft.volume=292&rft.spage=71&rft.epage=76&rft.pages=71-76&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2019.04.004&rft_dat=%3Cproquest_cross%3E2239636255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239636255&rft_id=info:pmid/&rft_els_id=S0924424719301931&rfr_iscdi=true |