Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network

Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of navigation 2019-07, Vol.72 (4), p.894-916
Hauptverfasser: Zhao, Liangbin, Shi, Guoyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 916
container_issue 4
container_start_page 894
container_title Journal of navigation
container_volume 72
creator Zhao, Liangbin
Shi, Guoyou
description Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a recurrent neural network is presented. In the method presented, the parameters of the DBSCAN algorithm were determined through statistical analysis, and the results of clustering were taken as the traffic patterns to train a recurrent neural network composed of Long Short-Term Memory (LSTM) units. The neural network was applied as a vessel trajectory predictor to conduct real-time maritime anomaly detection. Based on data from the Chinese Zhoushan Islands, experiments verified the applicability of the proposed method. The results show that the proposed method can detect anomalous behaviours of a vessel regarding speed, course and route quickly.
doi_str_mv 10.1017/S0373463319000031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239617451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0373463319000031</cupid><sourcerecordid>2239617451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-bf1c5633fe49cc4910a472c769ce00cc8a784affbb4460edc16cbe6a434327ad3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLguvoDvBU8VzNNmrTHZX3CquDrWtJ0unRt0zVJkf57U3bBgziXj-F7zPARcg70EijIq1fKJOOCMchpGAYHZAZc5LGUWXpIZhMdT_wxOXFuEyQZz9IZ-XhUtvFNh9HC9J1qx-gaPWrf9CYaXGPWYTeu8WNcKodVtGwH59FOhDJV9IJ6sBaNj55wsKoN4L97-3lKjmrVOjzb45y83968Le_j1fPdw3KxijUD6eOyBp2Gp2rkudY8B6q4TLQUuUZKtc6UzLiq67LkXFCsNAhdolCccZZIVbE5udjlbm3_NaDzxaYfrAkniyRhuQDJUwgq2Km07Z2zWBdb23TKjgXQYqqv-FNf8LC9R3Wlbao1_kb_7_oB5cFyPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239617451</pqid></control><display><type>article</type><title>Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network</title><source>Cambridge University Press Journals Complete</source><creator>Zhao, Liangbin ; Shi, Guoyou</creator><creatorcontrib>Zhao, Liangbin ; Shi, Guoyou</creatorcontrib><description>Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a recurrent neural network is presented. In the method presented, the parameters of the DBSCAN algorithm were determined through statistical analysis, and the results of clustering were taken as the traffic patterns to train a recurrent neural network composed of Long Short-Term Memory (LSTM) units. The neural network was applied as a vessel trajectory predictor to conduct real-time maritime anomaly detection. Based on data from the Chinese Zhoushan Islands, experiments verified the applicability of the proposed method. The results show that the proposed method can detect anomalous behaviours of a vessel regarding speed, course and route quickly.</description><identifier>ISSN: 0373-4633</identifier><identifier>EISSN: 1469-7785</identifier><identifier>DOI: 10.1017/S0373463319000031</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accidents ; Algorithms ; Anomalies ; Behavior ; Classification ; Clustering ; Density ; Detection ; Learning ; Methods ; Neural networks ; Noise ; Pattern recognition ; Principal components analysis ; Real time ; Recurrent neural networks ; Situational awareness ; Statistical analysis ; Statistical methods ; Supervisors ; Surveillance ; Vessels ; Water area</subject><ispartof>Journal of navigation, 2019-07, Vol.72 (4), p.894-916</ispartof><rights>Copyright © The Royal Institute of Navigation 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-bf1c5633fe49cc4910a472c769ce00cc8a784affbb4460edc16cbe6a434327ad3</citedby><cites>FETCH-LOGICAL-c317t-bf1c5633fe49cc4910a472c769ce00cc8a784affbb4460edc16cbe6a434327ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0373463319000031/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Zhao, Liangbin</creatorcontrib><creatorcontrib>Shi, Guoyou</creatorcontrib><title>Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network</title><title>Journal of navigation</title><addtitle>J. Navigation</addtitle><description>Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a recurrent neural network is presented. In the method presented, the parameters of the DBSCAN algorithm were determined through statistical analysis, and the results of clustering were taken as the traffic patterns to train a recurrent neural network composed of Long Short-Term Memory (LSTM) units. The neural network was applied as a vessel trajectory predictor to conduct real-time maritime anomaly detection. Based on data from the Chinese Zhoushan Islands, experiments verified the applicability of the proposed method. The results show that the proposed method can detect anomalous behaviours of a vessel regarding speed, course and route quickly.</description><subject>Accidents</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Behavior</subject><subject>Classification</subject><subject>Clustering</subject><subject>Density</subject><subject>Detection</subject><subject>Learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Pattern recognition</subject><subject>Principal components analysis</subject><subject>Real time</subject><subject>Recurrent neural networks</subject><subject>Situational awareness</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Supervisors</subject><subject>Surveillance</subject><subject>Vessels</subject><subject>Water area</subject><issn>0373-4633</issn><issn>1469-7785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtLxDAQDqLguvoDvBU8VzNNmrTHZX3CquDrWtJ0unRt0zVJkf57U3bBgziXj-F7zPARcg70EijIq1fKJOOCMchpGAYHZAZc5LGUWXpIZhMdT_wxOXFuEyQZz9IZ-XhUtvFNh9HC9J1qx-gaPWrf9CYaXGPWYTeu8WNcKodVtGwH59FOhDJV9IJ6sBaNj55wsKoN4L97-3lKjmrVOjzb45y83968Le_j1fPdw3KxijUD6eOyBp2Gp2rkudY8B6q4TLQUuUZKtc6UzLiq67LkXFCsNAhdolCccZZIVbE5udjlbm3_NaDzxaYfrAkniyRhuQDJUwgq2Km07Z2zWBdb23TKjgXQYqqv-FNf8LC9R3Wlbao1_kb_7_oB5cFyPg</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Zhao, Liangbin</creator><creator>Shi, Guoyou</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201907</creationdate><title>Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network</title><author>Zhao, Liangbin ; Shi, Guoyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-bf1c5633fe49cc4910a472c769ce00cc8a784affbb4460edc16cbe6a434327ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accidents</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Behavior</topic><topic>Classification</topic><topic>Clustering</topic><topic>Density</topic><topic>Detection</topic><topic>Learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Pattern recognition</topic><topic>Principal components analysis</topic><topic>Real time</topic><topic>Recurrent neural networks</topic><topic>Situational awareness</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Supervisors</topic><topic>Surveillance</topic><topic>Vessels</topic><topic>Water area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Liangbin</creatorcontrib><creatorcontrib>Shi, Guoyou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Liangbin</au><au>Shi, Guoyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network</atitle><jtitle>Journal of navigation</jtitle><addtitle>J. Navigation</addtitle><date>2019-07</date><risdate>2019</risdate><volume>72</volume><issue>4</issue><spage>894</spage><epage>916</epage><pages>894-916</pages><issn>0373-4633</issn><eissn>1469-7785</eissn><abstract>Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a recurrent neural network is presented. In the method presented, the parameters of the DBSCAN algorithm were determined through statistical analysis, and the results of clustering were taken as the traffic patterns to train a recurrent neural network composed of Long Short-Term Memory (LSTM) units. The neural network was applied as a vessel trajectory predictor to conduct real-time maritime anomaly detection. Based on data from the Chinese Zhoushan Islands, experiments verified the applicability of the proposed method. The results show that the proposed method can detect anomalous behaviours of a vessel regarding speed, course and route quickly.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0373463319000031</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0373-4633
ispartof Journal of navigation, 2019-07, Vol.72 (4), p.894-916
issn 0373-4633
1469-7785
language eng
recordid cdi_proquest_journals_2239617451
source Cambridge University Press Journals Complete
subjects Accidents
Algorithms
Anomalies
Behavior
Classification
Clustering
Density
Detection
Learning
Methods
Neural networks
Noise
Pattern recognition
Principal components analysis
Real time
Recurrent neural networks
Situational awareness
Statistical analysis
Statistical methods
Supervisors
Surveillance
Vessels
Water area
title Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maritime%20Anomaly%20Detection%20using%20Density-based%20Clustering%20and%20Recurrent%20Neural%20Network&rft.jtitle=Journal%20of%20navigation&rft.au=Zhao,%20Liangbin&rft.date=2019-07&rft.volume=72&rft.issue=4&rft.spage=894&rft.epage=916&rft.pages=894-916&rft.issn=0373-4633&rft.eissn=1469-7785&rft_id=info:doi/10.1017/S0373463319000031&rft_dat=%3Cproquest_cross%3E2239617451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239617451&rft_id=info:pmid/&rft_cupid=10_1017_S0373463319000031&rfr_iscdi=true