Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network
Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algor...
Gespeichert in:
Veröffentlicht in: | Journal of navigation 2019-07, Vol.72 (4), p.894-916 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 916 |
---|---|
container_issue | 4 |
container_start_page | 894 |
container_title | Journal of navigation |
container_volume | 72 |
creator | Zhao, Liangbin Shi, Guoyou |
description | Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a recurrent neural network is presented. In the method presented, the parameters of the DBSCAN algorithm were determined through statistical analysis, and the results of clustering were taken as the traffic patterns to train a recurrent neural network composed of Long Short-Term Memory (LSTM) units. The neural network was applied as a vessel trajectory predictor to conduct real-time maritime anomaly detection. Based on data from the Chinese Zhoushan Islands, experiments verified the applicability of the proposed method. The results show that the proposed method can detect anomalous behaviours of a vessel regarding speed, course and route quickly. |
doi_str_mv | 10.1017/S0373463319000031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239617451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0373463319000031</cupid><sourcerecordid>2239617451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-bf1c5633fe49cc4910a472c769ce00cc8a784affbb4460edc16cbe6a434327ad3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLguvoDvBU8VzNNmrTHZX3CquDrWtJ0unRt0zVJkf57U3bBgziXj-F7zPARcg70EijIq1fKJOOCMchpGAYHZAZc5LGUWXpIZhMdT_wxOXFuEyQZz9IZ-XhUtvFNh9HC9J1qx-gaPWrf9CYaXGPWYTeu8WNcKodVtGwH59FOhDJV9IJ6sBaNj55wsKoN4L97-3lKjmrVOjzb45y83968Le_j1fPdw3KxijUD6eOyBp2Gp2rkudY8B6q4TLQUuUZKtc6UzLiq67LkXFCsNAhdolCccZZIVbE5udjlbm3_NaDzxaYfrAkniyRhuQDJUwgq2Km07Z2zWBdb23TKjgXQYqqv-FNf8LC9R3Wlbao1_kb_7_oB5cFyPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239617451</pqid></control><display><type>article</type><title>Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network</title><source>Cambridge University Press Journals Complete</source><creator>Zhao, Liangbin ; Shi, Guoyou</creator><creatorcontrib>Zhao, Liangbin ; Shi, Guoyou</creatorcontrib><description>Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a recurrent neural network is presented. In the method presented, the parameters of the DBSCAN algorithm were determined through statistical analysis, and the results of clustering were taken as the traffic patterns to train a recurrent neural network composed of Long Short-Term Memory (LSTM) units. The neural network was applied as a vessel trajectory predictor to conduct real-time maritime anomaly detection. Based on data from the Chinese Zhoushan Islands, experiments verified the applicability of the proposed method. The results show that the proposed method can detect anomalous behaviours of a vessel regarding speed, course and route quickly.</description><identifier>ISSN: 0373-4633</identifier><identifier>EISSN: 1469-7785</identifier><identifier>DOI: 10.1017/S0373463319000031</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accidents ; Algorithms ; Anomalies ; Behavior ; Classification ; Clustering ; Density ; Detection ; Learning ; Methods ; Neural networks ; Noise ; Pattern recognition ; Principal components analysis ; Real time ; Recurrent neural networks ; Situational awareness ; Statistical analysis ; Statistical methods ; Supervisors ; Surveillance ; Vessels ; Water area</subject><ispartof>Journal of navigation, 2019-07, Vol.72 (4), p.894-916</ispartof><rights>Copyright © The Royal Institute of Navigation 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-bf1c5633fe49cc4910a472c769ce00cc8a784affbb4460edc16cbe6a434327ad3</citedby><cites>FETCH-LOGICAL-c317t-bf1c5633fe49cc4910a472c769ce00cc8a784affbb4460edc16cbe6a434327ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0373463319000031/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Zhao, Liangbin</creatorcontrib><creatorcontrib>Shi, Guoyou</creatorcontrib><title>Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network</title><title>Journal of navigation</title><addtitle>J. Navigation</addtitle><description>Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a recurrent neural network is presented. In the method presented, the parameters of the DBSCAN algorithm were determined through statistical analysis, and the results of clustering were taken as the traffic patterns to train a recurrent neural network composed of Long Short-Term Memory (LSTM) units. The neural network was applied as a vessel trajectory predictor to conduct real-time maritime anomaly detection. Based on data from the Chinese Zhoushan Islands, experiments verified the applicability of the proposed method. The results show that the proposed method can detect anomalous behaviours of a vessel regarding speed, course and route quickly.</description><subject>Accidents</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Behavior</subject><subject>Classification</subject><subject>Clustering</subject><subject>Density</subject><subject>Detection</subject><subject>Learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Noise</subject><subject>Pattern recognition</subject><subject>Principal components analysis</subject><subject>Real time</subject><subject>Recurrent neural networks</subject><subject>Situational awareness</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Supervisors</subject><subject>Surveillance</subject><subject>Vessels</subject><subject>Water area</subject><issn>0373-4633</issn><issn>1469-7785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEtLxDAQDqLguvoDvBU8VzNNmrTHZX3CquDrWtJ0unRt0zVJkf57U3bBgziXj-F7zPARcg70EijIq1fKJOOCMchpGAYHZAZc5LGUWXpIZhMdT_wxOXFuEyQZz9IZ-XhUtvFNh9HC9J1qx-gaPWrf9CYaXGPWYTeu8WNcKodVtGwH59FOhDJV9IJ6sBaNj55wsKoN4L97-3lKjmrVOjzb45y83968Le_j1fPdw3KxijUD6eOyBp2Gp2rkudY8B6q4TLQUuUZKtc6UzLiq67LkXFCsNAhdolCccZZIVbE5udjlbm3_NaDzxaYfrAkniyRhuQDJUwgq2Km07Z2zWBdb23TKjgXQYqqv-FNf8LC9R3Wlbao1_kb_7_oB5cFyPg</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Zhao, Liangbin</creator><creator>Shi, Guoyou</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201907</creationdate><title>Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network</title><author>Zhao, Liangbin ; Shi, Guoyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-bf1c5633fe49cc4910a472c769ce00cc8a784affbb4460edc16cbe6a434327ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accidents</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Behavior</topic><topic>Classification</topic><topic>Clustering</topic><topic>Density</topic><topic>Detection</topic><topic>Learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Noise</topic><topic>Pattern recognition</topic><topic>Principal components analysis</topic><topic>Real time</topic><topic>Recurrent neural networks</topic><topic>Situational awareness</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Supervisors</topic><topic>Surveillance</topic><topic>Vessels</topic><topic>Water area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Liangbin</creatorcontrib><creatorcontrib>Shi, Guoyou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Liangbin</au><au>Shi, Guoyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network</atitle><jtitle>Journal of navigation</jtitle><addtitle>J. Navigation</addtitle><date>2019-07</date><risdate>2019</risdate><volume>72</volume><issue>4</issue><spage>894</spage><epage>916</epage><pages>894-916</pages><issn>0373-4633</issn><eissn>1469-7785</eissn><abstract>Maritime anomaly detection can improve the situational awareness of vessel traffic supervisors and reduce maritime accidents. In order to better detect anomalous behaviour of a vessel in real time, a method that consists of a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a recurrent neural network is presented. In the method presented, the parameters of the DBSCAN algorithm were determined through statistical analysis, and the results of clustering were taken as the traffic patterns to train a recurrent neural network composed of Long Short-Term Memory (LSTM) units. The neural network was applied as a vessel trajectory predictor to conduct real-time maritime anomaly detection. Based on data from the Chinese Zhoushan Islands, experiments verified the applicability of the proposed method. The results show that the proposed method can detect anomalous behaviours of a vessel regarding speed, course and route quickly.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0373463319000031</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0373-4633 |
ispartof | Journal of navigation, 2019-07, Vol.72 (4), p.894-916 |
issn | 0373-4633 1469-7785 |
language | eng |
recordid | cdi_proquest_journals_2239617451 |
source | Cambridge University Press Journals Complete |
subjects | Accidents Algorithms Anomalies Behavior Classification Clustering Density Detection Learning Methods Neural networks Noise Pattern recognition Principal components analysis Real time Recurrent neural networks Situational awareness Statistical analysis Statistical methods Supervisors Surveillance Vessels Water area |
title | Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maritime%20Anomaly%20Detection%20using%20Density-based%20Clustering%20and%20Recurrent%20Neural%20Network&rft.jtitle=Journal%20of%20navigation&rft.au=Zhao,%20Liangbin&rft.date=2019-07&rft.volume=72&rft.issue=4&rft.spage=894&rft.epage=916&rft.pages=894-916&rft.issn=0373-4633&rft.eissn=1469-7785&rft_id=info:doi/10.1017/S0373463319000031&rft_dat=%3Cproquest_cross%3E2239617451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239617451&rft_id=info:pmid/&rft_cupid=10_1017_S0373463319000031&rfr_iscdi=true |