Improved Dust Forecast by Assimilating MODIS IR-Based Nighttime AOT in the ADAM2 Model

A data assimilation (DA) system employing day- and nighttime aerosol optical thickness (AOT) was developed for the Asian Dust Aerosol Model 2 (ADAM2), using the optimal interpolation (OI) method. The DA system assimilated nighttime AOT for dust retrieved from MODIS infrared (IR) measurements with an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SOLA 2017, Vol.13, pp.192-198
Hauptverfasser: Lee, Sang-Sam, Lee, Eun-Hee, Sohn, Byung-Ju, Lee, Hee Choon, Cho, Jeong Hoon, Ryoo, Sang-Boom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue
container_start_page 192
container_title SOLA
container_volume 13
creator Lee, Sang-Sam
Lee, Eun-Hee
Sohn, Byung-Ju
Lee, Hee Choon
Cho, Jeong Hoon
Ryoo, Sang-Boom
description A data assimilation (DA) system employing day- and nighttime aerosol optical thickness (AOT) was developed for the Asian Dust Aerosol Model 2 (ADAM2), using the optimal interpolation (OI) method. The DA system assimilated nighttime AOT for dust retrieved from MODIS infrared (IR) measurements with an artificial neural network (ANN) approach. An Asian dust case that occurred during 14-18 March 2009 was simulated using ADAM2. To examine the impact of the inclusion of nighttime AOT on forecasts of the data assimilation system, experiments were performed with different assimilation cycles (i.e., DA1: 24-hour cycle with daytime MODIS AOT only, DA2: 12-hour cycle with additional nighttime AOT). A control simulation was also performed without data assimilation (CTL). Forecasts were assessed using MODIS-derived AOT distributions as well as ground-based skyradiometer, PM10, and lidar observations. The model-estimated vertical distribution of the dust extinction coefficient was also compared with lidar measurements. Both experiments (DA1, DA2) were found to have improved forecasting, but DA2 outperformed DA1. Results suggest that the ANN-based nighttime AOT contributes more positively to the forecasting through better temporal coverage for data assimilation.
doi_str_mv 10.2151/sola.2017-035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239597061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239597061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-3d79c1ba956f0435a3a4dbc5026f68e6287e10212008aaa294a877a182afed1f3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKeX3ge87sxHk7aXdXNacA50ehvO2nTr6MdMMmH_3pTq8CbnhfOcHM6D0C0lE0YFvbddDRNGaBQQLs7QiPIwCWQYyfN_-RJdWbsjRCaCRSP0mTV7033rAs8O1uF5Z3QOPqyPOLW2aqoaXNVu8GI5y95x9hY8gPXwa7XZOlc1GqfLFa5a7LY-ztIFw4uu0PU1uiihtvrmt47Rx_xxNX0OXpZP2TR9CXLBqQt4ESU5XUMiZElCLoBDWKxzQZgsZawliyNNCaOMkBgAWBJCHEVAYwalLmjJx-hu-Ncf8XXQ1qlddzCtX6kY44lIIiKpp4KByk1nrdGl2puqAXNUlKhenerVqV6d8uo8Px34nXWw0ScajKvyWg805Yr0z9_UqZtvwSjd8h_-GXdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239597061</pqid></control><display><type>article</type><title>Improved Dust Forecast by Assimilating MODIS IR-Based Nighttime AOT in the ADAM2 Model</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Sang-Sam ; Lee, Eun-Hee ; Sohn, Byung-Ju ; Lee, Hee Choon ; Cho, Jeong Hoon ; Ryoo, Sang-Boom</creator><creatorcontrib>Lee, Sang-Sam ; Lee, Eun-Hee ; Sohn, Byung-Ju ; Lee, Hee Choon ; Cho, Jeong Hoon ; Ryoo, Sang-Boom</creatorcontrib><description>A data assimilation (DA) system employing day- and nighttime aerosol optical thickness (AOT) was developed for the Asian Dust Aerosol Model 2 (ADAM2), using the optimal interpolation (OI) method. The DA system assimilated nighttime AOT for dust retrieved from MODIS infrared (IR) measurements with an artificial neural network (ANN) approach. An Asian dust case that occurred during 14-18 March 2009 was simulated using ADAM2. To examine the impact of the inclusion of nighttime AOT on forecasts of the data assimilation system, experiments were performed with different assimilation cycles (i.e., DA1: 24-hour cycle with daytime MODIS AOT only, DA2: 12-hour cycle with additional nighttime AOT). A control simulation was also performed without data assimilation (CTL). Forecasts were assessed using MODIS-derived AOT distributions as well as ground-based skyradiometer, PM10, and lidar observations. The model-estimated vertical distribution of the dust extinction coefficient was also compared with lidar measurements. Both experiments (DA1, DA2) were found to have improved forecasting, but DA2 outperformed DA1. Results suggest that the ANN-based nighttime AOT contributes more positively to the forecasting through better temporal coverage for data assimilation.</description><identifier>ISSN: 1349-6476</identifier><identifier>EISSN: 1349-6476</identifier><identifier>DOI: 10.2151/sola.2017-035</identifier><language>eng</language><publisher>Tokyo: Meteorological Society of Japan</publisher><subject>Aerosols ; Atmospheric particulates ; Data ; Data assimilation ; Data collection ; Dust ; Dust storms ; Extinction coefficient ; Forecasting ; Interpolation ; Lidar ; Lidar measurements ; MODIS ; Night-time ; Optical thickness ; Particulate matter ; Vertical distribution</subject><ispartof>SOLA, 2017, Vol.13, pp.192-198</ispartof><rights>2017 by the Meteorological Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-3d79c1ba956f0435a3a4dbc5026f68e6287e10212008aaa294a877a182afed1f3</citedby><cites>FETCH-LOGICAL-c531t-3d79c1ba956f0435a3a4dbc5026f68e6287e10212008aaa294a877a182afed1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Sang-Sam</creatorcontrib><creatorcontrib>Lee, Eun-Hee</creatorcontrib><creatorcontrib>Sohn, Byung-Ju</creatorcontrib><creatorcontrib>Lee, Hee Choon</creatorcontrib><creatorcontrib>Cho, Jeong Hoon</creatorcontrib><creatorcontrib>Ryoo, Sang-Boom</creatorcontrib><title>Improved Dust Forecast by Assimilating MODIS IR-Based Nighttime AOT in the ADAM2 Model</title><title>SOLA</title><addtitle>SOLA</addtitle><description>A data assimilation (DA) system employing day- and nighttime aerosol optical thickness (AOT) was developed for the Asian Dust Aerosol Model 2 (ADAM2), using the optimal interpolation (OI) method. The DA system assimilated nighttime AOT for dust retrieved from MODIS infrared (IR) measurements with an artificial neural network (ANN) approach. An Asian dust case that occurred during 14-18 March 2009 was simulated using ADAM2. To examine the impact of the inclusion of nighttime AOT on forecasts of the data assimilation system, experiments were performed with different assimilation cycles (i.e., DA1: 24-hour cycle with daytime MODIS AOT only, DA2: 12-hour cycle with additional nighttime AOT). A control simulation was also performed without data assimilation (CTL). Forecasts were assessed using MODIS-derived AOT distributions as well as ground-based skyradiometer, PM10, and lidar observations. The model-estimated vertical distribution of the dust extinction coefficient was also compared with lidar measurements. Both experiments (DA1, DA2) were found to have improved forecasting, but DA2 outperformed DA1. Results suggest that the ANN-based nighttime AOT contributes more positively to the forecasting through better temporal coverage for data assimilation.</description><subject>Aerosols</subject><subject>Atmospheric particulates</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Dust</subject><subject>Dust storms</subject><subject>Extinction coefficient</subject><subject>Forecasting</subject><subject>Interpolation</subject><subject>Lidar</subject><subject>Lidar measurements</subject><subject>MODIS</subject><subject>Night-time</subject><subject>Optical thickness</subject><subject>Particulate matter</subject><subject>Vertical distribution</subject><issn>1349-6476</issn><issn>1349-6476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKeX3ge87sxHk7aXdXNacA50ehvO2nTr6MdMMmH_3pTq8CbnhfOcHM6D0C0lE0YFvbddDRNGaBQQLs7QiPIwCWQYyfN_-RJdWbsjRCaCRSP0mTV7033rAs8O1uF5Z3QOPqyPOLW2aqoaXNVu8GI5y95x9hY8gPXwa7XZOlc1GqfLFa5a7LY-ztIFw4uu0PU1uiihtvrmt47Rx_xxNX0OXpZP2TR9CXLBqQt4ESU5XUMiZElCLoBDWKxzQZgsZawliyNNCaOMkBgAWBJCHEVAYwalLmjJx-hu-Ncf8XXQ1qlddzCtX6kY44lIIiKpp4KByk1nrdGl2puqAXNUlKhenerVqV6d8uo8Px34nXWw0ScajKvyWg805Yr0z9_UqZtvwSjd8h_-GXdE</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Lee, Sang-Sam</creator><creator>Lee, Eun-Hee</creator><creator>Sohn, Byung-Ju</creator><creator>Lee, Hee Choon</creator><creator>Cho, Jeong Hoon</creator><creator>Ryoo, Sang-Boom</creator><general>Meteorological Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>2017</creationdate><title>Improved Dust Forecast by Assimilating MODIS IR-Based Nighttime AOT in the ADAM2 Model</title><author>Lee, Sang-Sam ; Lee, Eun-Hee ; Sohn, Byung-Ju ; Lee, Hee Choon ; Cho, Jeong Hoon ; Ryoo, Sang-Boom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-3d79c1ba956f0435a3a4dbc5026f68e6287e10212008aaa294a877a182afed1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosols</topic><topic>Atmospheric particulates</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Dust</topic><topic>Dust storms</topic><topic>Extinction coefficient</topic><topic>Forecasting</topic><topic>Interpolation</topic><topic>Lidar</topic><topic>Lidar measurements</topic><topic>MODIS</topic><topic>Night-time</topic><topic>Optical thickness</topic><topic>Particulate matter</topic><topic>Vertical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang-Sam</creatorcontrib><creatorcontrib>Lee, Eun-Hee</creatorcontrib><creatorcontrib>Sohn, Byung-Ju</creatorcontrib><creatorcontrib>Lee, Hee Choon</creatorcontrib><creatorcontrib>Cho, Jeong Hoon</creatorcontrib><creatorcontrib>Ryoo, Sang-Boom</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>SOLA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang-Sam</au><au>Lee, Eun-Hee</au><au>Sohn, Byung-Ju</au><au>Lee, Hee Choon</au><au>Cho, Jeong Hoon</au><au>Ryoo, Sang-Boom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Dust Forecast by Assimilating MODIS IR-Based Nighttime AOT in the ADAM2 Model</atitle><jtitle>SOLA</jtitle><addtitle>SOLA</addtitle><date>2017</date><risdate>2017</risdate><volume>13</volume><spage>192</spage><epage>198</epage><pages>192-198</pages><issn>1349-6476</issn><eissn>1349-6476</eissn><abstract>A data assimilation (DA) system employing day- and nighttime aerosol optical thickness (AOT) was developed for the Asian Dust Aerosol Model 2 (ADAM2), using the optimal interpolation (OI) method. The DA system assimilated nighttime AOT for dust retrieved from MODIS infrared (IR) measurements with an artificial neural network (ANN) approach. An Asian dust case that occurred during 14-18 March 2009 was simulated using ADAM2. To examine the impact of the inclusion of nighttime AOT on forecasts of the data assimilation system, experiments were performed with different assimilation cycles (i.e., DA1: 24-hour cycle with daytime MODIS AOT only, DA2: 12-hour cycle with additional nighttime AOT). A control simulation was also performed without data assimilation (CTL). Forecasts were assessed using MODIS-derived AOT distributions as well as ground-based skyradiometer, PM10, and lidar observations. The model-estimated vertical distribution of the dust extinction coefficient was also compared with lidar measurements. Both experiments (DA1, DA2) were found to have improved forecasting, but DA2 outperformed DA1. Results suggest that the ANN-based nighttime AOT contributes more positively to the forecasting through better temporal coverage for data assimilation.</abstract><cop>Tokyo</cop><pub>Meteorological Society of Japan</pub><doi>10.2151/sola.2017-035</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1349-6476
ispartof SOLA, 2017, Vol.13, pp.192-198
issn 1349-6476
1349-6476
language eng
recordid cdi_proquest_journals_2239597061
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Aerosols
Atmospheric particulates
Data
Data assimilation
Data collection
Dust
Dust storms
Extinction coefficient
Forecasting
Interpolation
Lidar
Lidar measurements
MODIS
Night-time
Optical thickness
Particulate matter
Vertical distribution
title Improved Dust Forecast by Assimilating MODIS IR-Based Nighttime AOT in the ADAM2 Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Dust%20Forecast%20by%20Assimilating%20MODIS%20IR-Based%20Nighttime%20AOT%20in%20the%20ADAM2%20Model&rft.jtitle=SOLA&rft.au=Lee,%20Sang-Sam&rft.date=2017&rft.volume=13&rft.spage=192&rft.epage=198&rft.pages=192-198&rft.issn=1349-6476&rft.eissn=1349-6476&rft_id=info:doi/10.2151/sola.2017-035&rft_dat=%3Cproquest_cross%3E2239597061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239597061&rft_id=info:pmid/&rfr_iscdi=true