The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting

Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2019-05, Vol.20 (5), p.2433-2448
Hauptverfasser: Venereau, C. M. A., Martin‐Short, R., Bastow, I. D., Allen, R. M., Kounoudis, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2448
container_issue 5
container_start_page 2433
container_title Geochemistry, geophysics, geosystems : G3
container_volume 20
creator Venereau, C. M. A.
Martin‐Short, R.
Bastow, I. D.
Allen, R. M.
Kounoudis, R.
description Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region documents a transition from subduction along the Aleutian Arc to strike‐slip faulting along the Pacific Northwest. To better understand mantle interactions within this subduction zone, we conduct an SKS shear‐wave splitting analysis on passive‐source seismic data collected between 2011 and 2018 at 239 broadband seismometers, including those from the Transportable Array. Anisotropic fast directions in the east of our study area parallel the Queen Charlotte and Fairweather transform faults, suggesting that the ongoing development of lithospheric anisotropy dominates the results there. However, our observed delay times (δt = 1–1.5 s) obtained across the study region may also imply an asthenospheric contribution to the splitting pattern. Our splitting observations exhibit slab‐parallel fast directions northwest of the trench and a rotation of fast directions around the northeastern slab edge. These observations suggest the presence of toroidal asthenospheric flow around the edge of the downgoing Pacific plate. We suggest that Wrangell Volcanic Field volcanism might be caused by mantle upwelling associated with this flow. Splitting observations closer to the trench can be explained by fossil anisotropy within the downgoing Pacific‐Yakutat plate combined with entrained subslab mantle. The geometry of the slab, including its variable dip and its abrupt eastern edge, thus plays an important role in governing mantle flow beneath Alaska. Key Points Fast directions parallel major transform faults and Yakutat terrane subduction, suggesting a lithospheric source of anisotropy Fast directions wrapping around the slab edge and high delay times suggest a toroidal asthenospheric flow as another cause of anisotropy Variability in slab geometry exerts first‐order control over mantle flow at the edge of the Alaskan margin
doi_str_mv 10.1029/2018GC008170
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2239566795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239566795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4111-6838a7a3214915662fe8653e6a7c9c65e53bba74adbbeae1dd1c332ffa5f2f2b3</originalsourceid><addsrcrecordid>eNp9kM1OwkAUhRujiYjufIBJ3IrOT6c_7gg_lQRjIqjL5radlsEyxZkBws430Gf0SRzEBStX9-Te75yTXM-7JPiGYBrfUkyipIdxREJ85LUIp7xDMQ2PD_Spd2bMHGPicx61vM_pTKCnphaoKdELaAmZ05MaMtSXSyQV6mu5lqpCD6CsOw3rZoPAIut8AzBWaIUGRfXr3-26NZg3UGiyyopVbmWjnFNXUt2hkTKymlmDhrpZoMlMgP7--HqFtStc1tJaV3PunZRQG3HxN9ve83Aw7d13xo_JqNcdd8AnhHSCiEUQAqPEjwkPAlqKKOBMBBDmcR5wwVmWQehDkWUCBCkKkjNGyxJ4SUuasbZ3tc9d6uZ9JYxN581KK1eZUspiFxnG3FHXeyrXjTFalOlSywXobUpwunt5evhyh7M9vpG12P7LpkmSDCiJIsJ-AGGwgyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239566795</pqid></control><display><type>article</type><title>The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting</title><source>Wiley Online Library Open Access</source><creator>Venereau, C. M. A. ; Martin‐Short, R. ; Bastow, I. D. ; Allen, R. M. ; Kounoudis, R.</creator><creatorcontrib>Venereau, C. M. A. ; Martin‐Short, R. ; Bastow, I. D. ; Allen, R. M. ; Kounoudis, R.</creatorcontrib><description>Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region documents a transition from subduction along the Aleutian Arc to strike‐slip faulting along the Pacific Northwest. To better understand mantle interactions within this subduction zone, we conduct an SKS shear‐wave splitting analysis on passive‐source seismic data collected between 2011 and 2018 at 239 broadband seismometers, including those from the Transportable Array. Anisotropic fast directions in the east of our study area parallel the Queen Charlotte and Fairweather transform faults, suggesting that the ongoing development of lithospheric anisotropy dominates the results there. However, our observed delay times (δt = 1–1.5 s) obtained across the study region may also imply an asthenospheric contribution to the splitting pattern. Our splitting observations exhibit slab‐parallel fast directions northwest of the trench and a rotation of fast directions around the northeastern slab edge. These observations suggest the presence of toroidal asthenospheric flow around the edge of the downgoing Pacific plate. We suggest that Wrangell Volcanic Field volcanism might be caused by mantle upwelling associated with this flow. Splitting observations closer to the trench can be explained by fossil anisotropy within the downgoing Pacific‐Yakutat plate combined with entrained subslab mantle. The geometry of the slab, including its variable dip and its abrupt eastern edge, thus plays an important role in governing mantle flow beneath Alaska. Key Points Fast directions parallel major transform faults and Yakutat terrane subduction, suggesting a lithospheric source of anisotropy Fast directions wrapping around the slab edge and high delay times suggest a toroidal asthenospheric flow as another cause of anisotropy Variability in slab geometry exerts first‐order control over mantle flow at the edge of the Alaskan margin</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2018GC008170</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Alaska ; Anisotropy ; Asthenosphere ; Fossils ; Interactions ; Magma ; Mantle ; Ocean circulation ; Seismic data ; Seismological data ; Seismometers ; Shear ; Subduction ; Subduction zones ; Transform faults ; Upwelling ; Volcanic fields ; Volcanism</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2019-05, Vol.20 (5), p.2433-2448</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4111-6838a7a3214915662fe8653e6a7c9c65e53bba74adbbeae1dd1c332ffa5f2f2b3</citedby><cites>FETCH-LOGICAL-a4111-6838a7a3214915662fe8653e6a7c9c65e53bba74adbbeae1dd1c332ffa5f2f2b3</cites><orcidid>0000-0003-4293-9772 ; 0000-0003-0671-7857 ; 0000-0003-1468-9278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GC008170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GC008170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GC008170$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Venereau, C. M. A.</creatorcontrib><creatorcontrib>Martin‐Short, R.</creatorcontrib><creatorcontrib>Bastow, I. D.</creatorcontrib><creatorcontrib>Allen, R. M.</creatorcontrib><creatorcontrib>Kounoudis, R.</creatorcontrib><title>The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting</title><title>Geochemistry, geophysics, geosystems : G3</title><description>Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region documents a transition from subduction along the Aleutian Arc to strike‐slip faulting along the Pacific Northwest. To better understand mantle interactions within this subduction zone, we conduct an SKS shear‐wave splitting analysis on passive‐source seismic data collected between 2011 and 2018 at 239 broadband seismometers, including those from the Transportable Array. Anisotropic fast directions in the east of our study area parallel the Queen Charlotte and Fairweather transform faults, suggesting that the ongoing development of lithospheric anisotropy dominates the results there. However, our observed delay times (δt = 1–1.5 s) obtained across the study region may also imply an asthenospheric contribution to the splitting pattern. Our splitting observations exhibit slab‐parallel fast directions northwest of the trench and a rotation of fast directions around the northeastern slab edge. These observations suggest the presence of toroidal asthenospheric flow around the edge of the downgoing Pacific plate. We suggest that Wrangell Volcanic Field volcanism might be caused by mantle upwelling associated with this flow. Splitting observations closer to the trench can be explained by fossil anisotropy within the downgoing Pacific‐Yakutat plate combined with entrained subslab mantle. The geometry of the slab, including its variable dip and its abrupt eastern edge, thus plays an important role in governing mantle flow beneath Alaska. Key Points Fast directions parallel major transform faults and Yakutat terrane subduction, suggesting a lithospheric source of anisotropy Fast directions wrapping around the slab edge and high delay times suggest a toroidal asthenospheric flow as another cause of anisotropy Variability in slab geometry exerts first‐order control over mantle flow at the edge of the Alaskan margin</description><subject>Alaska</subject><subject>Anisotropy</subject><subject>Asthenosphere</subject><subject>Fossils</subject><subject>Interactions</subject><subject>Magma</subject><subject>Mantle</subject><subject>Ocean circulation</subject><subject>Seismic data</subject><subject>Seismological data</subject><subject>Seismometers</subject><subject>Shear</subject><subject>Subduction</subject><subject>Subduction zones</subject><subject>Transform faults</subject><subject>Upwelling</subject><subject>Volcanic fields</subject><subject>Volcanism</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwkAUhRujiYjufIBJ3IrOT6c_7gg_lQRjIqjL5radlsEyxZkBws430Gf0SRzEBStX9-Te75yTXM-7JPiGYBrfUkyipIdxREJ85LUIp7xDMQ2PD_Spd2bMHGPicx61vM_pTKCnphaoKdELaAmZ05MaMtSXSyQV6mu5lqpCD6CsOw3rZoPAIut8AzBWaIUGRfXr3-26NZg3UGiyyopVbmWjnFNXUt2hkTKymlmDhrpZoMlMgP7--HqFtStc1tJaV3PunZRQG3HxN9ve83Aw7d13xo_JqNcdd8AnhHSCiEUQAqPEjwkPAlqKKOBMBBDmcR5wwVmWQehDkWUCBCkKkjNGyxJ4SUuasbZ3tc9d6uZ9JYxN581KK1eZUspiFxnG3FHXeyrXjTFalOlSywXobUpwunt5evhyh7M9vpG12P7LpkmSDCiJIsJ-AGGwgyk</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Venereau, C. M. A.</creator><creator>Martin‐Short, R.</creator><creator>Bastow, I. D.</creator><creator>Allen, R. M.</creator><creator>Kounoudis, R.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-4293-9772</orcidid><orcidid>https://orcid.org/0000-0003-0671-7857</orcidid><orcidid>https://orcid.org/0000-0003-1468-9278</orcidid></search><sort><creationdate>201905</creationdate><title>The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting</title><author>Venereau, C. M. A. ; Martin‐Short, R. ; Bastow, I. D. ; Allen, R. M. ; Kounoudis, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4111-6838a7a3214915662fe8653e6a7c9c65e53bba74adbbeae1dd1c332ffa5f2f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alaska</topic><topic>Anisotropy</topic><topic>Asthenosphere</topic><topic>Fossils</topic><topic>Interactions</topic><topic>Magma</topic><topic>Mantle</topic><topic>Ocean circulation</topic><topic>Seismic data</topic><topic>Seismological data</topic><topic>Seismometers</topic><topic>Shear</topic><topic>Subduction</topic><topic>Subduction zones</topic><topic>Transform faults</topic><topic>Upwelling</topic><topic>Volcanic fields</topic><topic>Volcanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venereau, C. M. A.</creatorcontrib><creatorcontrib>Martin‐Short, R.</creatorcontrib><creatorcontrib>Bastow, I. D.</creatorcontrib><creatorcontrib>Allen, R. M.</creatorcontrib><creatorcontrib>Kounoudis, R.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Venereau, C. M. A.</au><au>Martin‐Short, R.</au><au>Bastow, I. D.</au><au>Allen, R. M.</au><au>Kounoudis, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><date>2019-05</date><risdate>2019</risdate><volume>20</volume><issue>5</issue><spage>2433</spage><epage>2448</epage><pages>2433-2448</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region documents a transition from subduction along the Aleutian Arc to strike‐slip faulting along the Pacific Northwest. To better understand mantle interactions within this subduction zone, we conduct an SKS shear‐wave splitting analysis on passive‐source seismic data collected between 2011 and 2018 at 239 broadband seismometers, including those from the Transportable Array. Anisotropic fast directions in the east of our study area parallel the Queen Charlotte and Fairweather transform faults, suggesting that the ongoing development of lithospheric anisotropy dominates the results there. However, our observed delay times (δt = 1–1.5 s) obtained across the study region may also imply an asthenospheric contribution to the splitting pattern. Our splitting observations exhibit slab‐parallel fast directions northwest of the trench and a rotation of fast directions around the northeastern slab edge. These observations suggest the presence of toroidal asthenospheric flow around the edge of the downgoing Pacific plate. We suggest that Wrangell Volcanic Field volcanism might be caused by mantle upwelling associated with this flow. Splitting observations closer to the trench can be explained by fossil anisotropy within the downgoing Pacific‐Yakutat plate combined with entrained subslab mantle. The geometry of the slab, including its variable dip and its abrupt eastern edge, thus plays an important role in governing mantle flow beneath Alaska. Key Points Fast directions parallel major transform faults and Yakutat terrane subduction, suggesting a lithospheric source of anisotropy Fast directions wrapping around the slab edge and high delay times suggest a toroidal asthenospheric flow as another cause of anisotropy Variability in slab geometry exerts first‐order control over mantle flow at the edge of the Alaskan margin</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GC008170</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4293-9772</orcidid><orcidid>https://orcid.org/0000-0003-0671-7857</orcidid><orcidid>https://orcid.org/0000-0003-1468-9278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2019-05, Vol.20 (5), p.2433-2448
issn 1525-2027
1525-2027
language eng
recordid cdi_proquest_journals_2239566795
source Wiley Online Library Open Access
subjects Alaska
Anisotropy
Asthenosphere
Fossils
Interactions
Magma
Mantle
Ocean circulation
Seismic data
Seismological data
Seismometers
Shear
Subduction
Subduction zones
Transform faults
Upwelling
Volcanic fields
Volcanism
title The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Variable%20Slab%20Dip%20in%20Driving%20Mantle%20Flow%20at%20the%20Eastern%20Edge%20of%20the%20Alaskan%20Subduction%20Margin:%20Insights%20From%20Shear%E2%80%90Wave%20Splitting&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Venereau,%20C.%20M.%20A.&rft.date=2019-05&rft.volume=20&rft.issue=5&rft.spage=2433&rft.epage=2448&rft.pages=2433-2448&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2018GC008170&rft_dat=%3Cproquest_24P%3E2239566795%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239566795&rft_id=info:pmid/&rfr_iscdi=true