The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting
Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region...
Gespeichert in:
Veröffentlicht in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2019-05, Vol.20 (5), p.2433-2448 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2448 |
---|---|
container_issue | 5 |
container_start_page | 2433 |
container_title | Geochemistry, geophysics, geosystems : G3 |
container_volume | 20 |
creator | Venereau, C. M. A. Martin‐Short, R. Bastow, I. D. Allen, R. M. Kounoudis, R. |
description | Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region documents a transition from subduction along the Aleutian Arc to strike‐slip faulting along the Pacific Northwest. To better understand mantle interactions within this subduction zone, we conduct an SKS shear‐wave splitting analysis on passive‐source seismic data collected between 2011 and 2018 at 239 broadband seismometers, including those from the Transportable Array. Anisotropic fast directions in the east of our study area parallel the Queen Charlotte and Fairweather transform faults, suggesting that the ongoing development of lithospheric anisotropy dominates the results there. However, our observed delay times (δt = 1–1.5 s) obtained across the study region may also imply an asthenospheric contribution to the splitting pattern. Our splitting observations exhibit slab‐parallel fast directions northwest of the trench and a rotation of fast directions around the northeastern slab edge. These observations suggest the presence of toroidal asthenospheric flow around the edge of the downgoing Pacific plate. We suggest that Wrangell Volcanic Field volcanism might be caused by mantle upwelling associated with this flow. Splitting observations closer to the trench can be explained by fossil anisotropy within the downgoing Pacific‐Yakutat plate combined with entrained subslab mantle. The geometry of the slab, including its variable dip and its abrupt eastern edge, thus plays an important role in governing mantle flow beneath Alaska.
Key Points
Fast directions parallel major transform faults and Yakutat terrane subduction, suggesting a lithospheric source of anisotropy
Fast directions wrapping around the slab edge and high delay times suggest a toroidal asthenospheric flow as another cause of anisotropy
Variability in slab geometry exerts first‐order control over mantle flow at the edge of the Alaskan margin |
doi_str_mv | 10.1029/2018GC008170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2239566795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239566795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4111-6838a7a3214915662fe8653e6a7c9c65e53bba74adbbeae1dd1c332ffa5f2f2b3</originalsourceid><addsrcrecordid>eNp9kM1OwkAUhRujiYjufIBJ3IrOT6c_7gg_lQRjIqjL5radlsEyxZkBws430Gf0SRzEBStX9-Te75yTXM-7JPiGYBrfUkyipIdxREJ85LUIp7xDMQ2PD_Spd2bMHGPicx61vM_pTKCnphaoKdELaAmZ05MaMtSXSyQV6mu5lqpCD6CsOw3rZoPAIut8AzBWaIUGRfXr3-26NZg3UGiyyopVbmWjnFNXUt2hkTKymlmDhrpZoMlMgP7--HqFtStc1tJaV3PunZRQG3HxN9ve83Aw7d13xo_JqNcdd8AnhHSCiEUQAqPEjwkPAlqKKOBMBBDmcR5wwVmWQehDkWUCBCkKkjNGyxJ4SUuasbZ3tc9d6uZ9JYxN581KK1eZUspiFxnG3FHXeyrXjTFalOlSywXobUpwunt5evhyh7M9vpG12P7LpkmSDCiJIsJ-AGGwgyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239566795</pqid></control><display><type>article</type><title>The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting</title><source>Wiley Online Library Open Access</source><creator>Venereau, C. M. A. ; Martin‐Short, R. ; Bastow, I. D. ; Allen, R. M. ; Kounoudis, R.</creator><creatorcontrib>Venereau, C. M. A. ; Martin‐Short, R. ; Bastow, I. D. ; Allen, R. M. ; Kounoudis, R.</creatorcontrib><description>Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region documents a transition from subduction along the Aleutian Arc to strike‐slip faulting along the Pacific Northwest. To better understand mantle interactions within this subduction zone, we conduct an SKS shear‐wave splitting analysis on passive‐source seismic data collected between 2011 and 2018 at 239 broadband seismometers, including those from the Transportable Array. Anisotropic fast directions in the east of our study area parallel the Queen Charlotte and Fairweather transform faults, suggesting that the ongoing development of lithospheric anisotropy dominates the results there. However, our observed delay times (δt = 1–1.5 s) obtained across the study region may also imply an asthenospheric contribution to the splitting pattern. Our splitting observations exhibit slab‐parallel fast directions northwest of the trench and a rotation of fast directions around the northeastern slab edge. These observations suggest the presence of toroidal asthenospheric flow around the edge of the downgoing Pacific plate. We suggest that Wrangell Volcanic Field volcanism might be caused by mantle upwelling associated with this flow. Splitting observations closer to the trench can be explained by fossil anisotropy within the downgoing Pacific‐Yakutat plate combined with entrained subslab mantle. The geometry of the slab, including its variable dip and its abrupt eastern edge, thus plays an important role in governing mantle flow beneath Alaska.
Key Points
Fast directions parallel major transform faults and Yakutat terrane subduction, suggesting a lithospheric source of anisotropy
Fast directions wrapping around the slab edge and high delay times suggest a toroidal asthenospheric flow as another cause of anisotropy
Variability in slab geometry exerts first‐order control over mantle flow at the edge of the Alaskan margin</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2018GC008170</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Alaska ; Anisotropy ; Asthenosphere ; Fossils ; Interactions ; Magma ; Mantle ; Ocean circulation ; Seismic data ; Seismological data ; Seismometers ; Shear ; Subduction ; Subduction zones ; Transform faults ; Upwelling ; Volcanic fields ; Volcanism</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2019-05, Vol.20 (5), p.2433-2448</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4111-6838a7a3214915662fe8653e6a7c9c65e53bba74adbbeae1dd1c332ffa5f2f2b3</citedby><cites>FETCH-LOGICAL-a4111-6838a7a3214915662fe8653e6a7c9c65e53bba74adbbeae1dd1c332ffa5f2f2b3</cites><orcidid>0000-0003-4293-9772 ; 0000-0003-0671-7857 ; 0000-0003-1468-9278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GC008170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GC008170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GC008170$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Venereau, C. M. A.</creatorcontrib><creatorcontrib>Martin‐Short, R.</creatorcontrib><creatorcontrib>Bastow, I. D.</creatorcontrib><creatorcontrib>Allen, R. M.</creatorcontrib><creatorcontrib>Kounoudis, R.</creatorcontrib><title>The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting</title><title>Geochemistry, geophysics, geosystems : G3</title><description>Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region documents a transition from subduction along the Aleutian Arc to strike‐slip faulting along the Pacific Northwest. To better understand mantle interactions within this subduction zone, we conduct an SKS shear‐wave splitting analysis on passive‐source seismic data collected between 2011 and 2018 at 239 broadband seismometers, including those from the Transportable Array. Anisotropic fast directions in the east of our study area parallel the Queen Charlotte and Fairweather transform faults, suggesting that the ongoing development of lithospheric anisotropy dominates the results there. However, our observed delay times (δt = 1–1.5 s) obtained across the study region may also imply an asthenospheric contribution to the splitting pattern. Our splitting observations exhibit slab‐parallel fast directions northwest of the trench and a rotation of fast directions around the northeastern slab edge. These observations suggest the presence of toroidal asthenospheric flow around the edge of the downgoing Pacific plate. We suggest that Wrangell Volcanic Field volcanism might be caused by mantle upwelling associated with this flow. Splitting observations closer to the trench can be explained by fossil anisotropy within the downgoing Pacific‐Yakutat plate combined with entrained subslab mantle. The geometry of the slab, including its variable dip and its abrupt eastern edge, thus plays an important role in governing mantle flow beneath Alaska.
Key Points
Fast directions parallel major transform faults and Yakutat terrane subduction, suggesting a lithospheric source of anisotropy
Fast directions wrapping around the slab edge and high delay times suggest a toroidal asthenospheric flow as another cause of anisotropy
Variability in slab geometry exerts first‐order control over mantle flow at the edge of the Alaskan margin</description><subject>Alaska</subject><subject>Anisotropy</subject><subject>Asthenosphere</subject><subject>Fossils</subject><subject>Interactions</subject><subject>Magma</subject><subject>Mantle</subject><subject>Ocean circulation</subject><subject>Seismic data</subject><subject>Seismological data</subject><subject>Seismometers</subject><subject>Shear</subject><subject>Subduction</subject><subject>Subduction zones</subject><subject>Transform faults</subject><subject>Upwelling</subject><subject>Volcanic fields</subject><subject>Volcanism</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwkAUhRujiYjufIBJ3IrOT6c_7gg_lQRjIqjL5radlsEyxZkBws430Gf0SRzEBStX9-Te75yTXM-7JPiGYBrfUkyipIdxREJ85LUIp7xDMQ2PD_Spd2bMHGPicx61vM_pTKCnphaoKdELaAmZ05MaMtSXSyQV6mu5lqpCD6CsOw3rZoPAIut8AzBWaIUGRfXr3-26NZg3UGiyyopVbmWjnFNXUt2hkTKymlmDhrpZoMlMgP7--HqFtStc1tJaV3PunZRQG3HxN9ve83Aw7d13xo_JqNcdd8AnhHSCiEUQAqPEjwkPAlqKKOBMBBDmcR5wwVmWQehDkWUCBCkKkjNGyxJ4SUuasbZ3tc9d6uZ9JYxN581KK1eZUspiFxnG3FHXeyrXjTFalOlSywXobUpwunt5evhyh7M9vpG12P7LpkmSDCiJIsJ-AGGwgyk</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Venereau, C. M. A.</creator><creator>Martin‐Short, R.</creator><creator>Bastow, I. D.</creator><creator>Allen, R. M.</creator><creator>Kounoudis, R.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-4293-9772</orcidid><orcidid>https://orcid.org/0000-0003-0671-7857</orcidid><orcidid>https://orcid.org/0000-0003-1468-9278</orcidid></search><sort><creationdate>201905</creationdate><title>The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting</title><author>Venereau, C. M. A. ; Martin‐Short, R. ; Bastow, I. D. ; Allen, R. M. ; Kounoudis, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4111-6838a7a3214915662fe8653e6a7c9c65e53bba74adbbeae1dd1c332ffa5f2f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alaska</topic><topic>Anisotropy</topic><topic>Asthenosphere</topic><topic>Fossils</topic><topic>Interactions</topic><topic>Magma</topic><topic>Mantle</topic><topic>Ocean circulation</topic><topic>Seismic data</topic><topic>Seismological data</topic><topic>Seismometers</topic><topic>Shear</topic><topic>Subduction</topic><topic>Subduction zones</topic><topic>Transform faults</topic><topic>Upwelling</topic><topic>Volcanic fields</topic><topic>Volcanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venereau, C. M. A.</creatorcontrib><creatorcontrib>Martin‐Short, R.</creatorcontrib><creatorcontrib>Bastow, I. D.</creatorcontrib><creatorcontrib>Allen, R. M.</creatorcontrib><creatorcontrib>Kounoudis, R.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Venereau, C. M. A.</au><au>Martin‐Short, R.</au><au>Bastow, I. D.</au><au>Allen, R. M.</au><au>Kounoudis, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><date>2019-05</date><risdate>2019</risdate><volume>20</volume><issue>5</issue><spage>2433</spage><epage>2448</epage><pages>2433-2448</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Alaska provides an ideal tectonic setting for investigating the interaction between subduction and asthenospheric flow. Within the span of a few hundred kilometers along strike, the geometry of the subducting Pacific plate varies significantly and terminates in a sharp edge. Furthermore, the region documents a transition from subduction along the Aleutian Arc to strike‐slip faulting along the Pacific Northwest. To better understand mantle interactions within this subduction zone, we conduct an SKS shear‐wave splitting analysis on passive‐source seismic data collected between 2011 and 2018 at 239 broadband seismometers, including those from the Transportable Array. Anisotropic fast directions in the east of our study area parallel the Queen Charlotte and Fairweather transform faults, suggesting that the ongoing development of lithospheric anisotropy dominates the results there. However, our observed delay times (δt = 1–1.5 s) obtained across the study region may also imply an asthenospheric contribution to the splitting pattern. Our splitting observations exhibit slab‐parallel fast directions northwest of the trench and a rotation of fast directions around the northeastern slab edge. These observations suggest the presence of toroidal asthenospheric flow around the edge of the downgoing Pacific plate. We suggest that Wrangell Volcanic Field volcanism might be caused by mantle upwelling associated with this flow. Splitting observations closer to the trench can be explained by fossil anisotropy within the downgoing Pacific‐Yakutat plate combined with entrained subslab mantle. The geometry of the slab, including its variable dip and its abrupt eastern edge, thus plays an important role in governing mantle flow beneath Alaska.
Key Points
Fast directions parallel major transform faults and Yakutat terrane subduction, suggesting a lithospheric source of anisotropy
Fast directions wrapping around the slab edge and high delay times suggest a toroidal asthenospheric flow as another cause of anisotropy
Variability in slab geometry exerts first‐order control over mantle flow at the edge of the Alaskan margin</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2018GC008170</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4293-9772</orcidid><orcidid>https://orcid.org/0000-0003-0671-7857</orcidid><orcidid>https://orcid.org/0000-0003-1468-9278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1525-2027 |
ispartof | Geochemistry, geophysics, geosystems : G3, 2019-05, Vol.20 (5), p.2433-2448 |
issn | 1525-2027 1525-2027 |
language | eng |
recordid | cdi_proquest_journals_2239566795 |
source | Wiley Online Library Open Access |
subjects | Alaska Anisotropy Asthenosphere Fossils Interactions Magma Mantle Ocean circulation Seismic data Seismological data Seismometers Shear Subduction Subduction zones Transform faults Upwelling Volcanic fields Volcanism |
title | The Role of Variable Slab Dip in Driving Mantle Flow at the Eastern Edge of the Alaskan Subduction Margin: Insights From Shear‐Wave Splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Variable%20Slab%20Dip%20in%20Driving%20Mantle%20Flow%20at%20the%20Eastern%20Edge%20of%20the%20Alaskan%20Subduction%20Margin:%20Insights%20From%20Shear%E2%80%90Wave%20Splitting&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Venereau,%20C.%20M.%20A.&rft.date=2019-05&rft.volume=20&rft.issue=5&rft.spage=2433&rft.epage=2448&rft.pages=2433-2448&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2018GC008170&rft_dat=%3Cproquest_24P%3E2239566795%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239566795&rft_id=info:pmid/&rfr_iscdi=true |