Testing for Trends in High-Dimensional Time Series

The article considers statistical inference for trends of high-dimensional time series. Based on a modified L 2 $\mathcal {L}^2$ distance between parametric and nonparametric trend estimators, we propose a de-diagonalized quadratic form test statistic for testing patterns on trends, such as linear,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2019-04, Vol.114 (526), p.869-881
Hauptverfasser: Chen, Likai, Wu, Wei Biao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article considers statistical inference for trends of high-dimensional time series. Based on a modified L 2 $\mathcal {L}^2$ distance between parametric and nonparametric trend estimators, we propose a de-diagonalized quadratic form test statistic for testing patterns on trends, such as linear, quadratic, or parallel forms. We develop an asymptotic theory for the test statistic. A Gaussian multiplier testing procedure is proposed and it has an improved finite sample performance. Our testing procedure is applied to a spatial temporal temperature data gathered from various locations across America. A simulation study is also presented to illustrate the performance of our testing method. Supplementary materials for this article are available online.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.2018.1456935