A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching
In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2019-09, Vol.78 (18), p.26787-26806 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26806 |
---|---|
container_issue | 18 |
container_start_page | 26787 |
container_title | Multimedia tools and applications |
container_volume | 78 |
creator | Wang, Xianghai Tao, Jingzhe Shen, Yutong Bai, Shifu Song, Chuanming |
description | In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high-frequency coefficients based on NSST have strong directional neighborhood correlation within the same sub-band and parent-children correlation between sub-bands in the same direction. In order to combine these two kinds of correlations, we design a type of weighted directional neighborhood templates which can be used for any number of direction sub-bands to depict the direction correlation, and use the tree structure to model the correlation between parent-children coefficients. Experiments show that the proposed method in this paper can provide a fused MS image with high spatial resolution, which can provide convenience for subsequent applications such as classification and target recognition. |
doi_str_mv | 10.1007/s11042-019-07841-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239441251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239441251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-af132994f2b681a69119c22f2b4cc38bd043582027ff0c186d59a9896e265ff3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURQdRsFb_gKuA69G8fMxMlqX4BUWFdh8ymaQzpU1qkln4700dwZ2rl0fOvTxOUdwCvgeM64cIgBkpMYgS1w2Dkp8VM-A1LeuawHl-0waXNcdwWVzFuMMYKk7YrDAL9LZeb9CHcrFX4Wjc4LboYFLvO9SqaDrkHeqGYHQavFN75Myw7Vsfep8J7UMwe3X6Qsp1KAVjUExh1GkMBh1U0n0uvC4urNpHc_M758Xm6XGzfClX78-vy8Wq1BREKpUFSoRglrRVA6oSAEITklemNW3aDjPKG4JJbS3W0FQdF0o0ojKk4tbSeXE31R6D_xxNTHLnx5CPjpIQKhgDwiFTZKJ08DEGY-UxDAcVviRgebIpJ5sy25Q_NiXPITqFYobd1oS_6n9S35zAeAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239441251</pqid></control><display><type>article</type><title>A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching</title><source>SpringerNature Journals</source><creator>Wang, Xianghai ; Tao, Jingzhe ; Shen, Yutong ; Bai, Shifu ; Song, Chuanming</creator><creatorcontrib>Wang, Xianghai ; Tao, Jingzhe ; Shen, Yutong ; Bai, Shifu ; Song, Chuanming</creatorcontrib><description>In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high-frequency coefficients based on NSST have strong directional neighborhood correlation within the same sub-band and parent-children correlation between sub-bands in the same direction. In order to combine these two kinds of correlations, we design a type of weighted directional neighborhood templates which can be used for any number of direction sub-bands to depict the direction correlation, and use the tree structure to model the correlation between parent-children coefficients. Experiments show that the proposed method in this paper can provide a fused MS image with high spatial resolution, which can provide convenience for subsequent applications such as classification and target recognition.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-07841-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banded structure ; Coefficients ; Computer Communication Networks ; Computer Science ; Correlation analysis ; Data Structures and Information Theory ; Multimedia Information Systems ; Neighborhoods ; Remote sensing ; Spatial resolution ; Special Purpose and Application-Based Systems ; Target recognition</subject><ispartof>Multimedia tools and applications, 2019-09, Vol.78 (18), p.26787-26806</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-af132994f2b681a69119c22f2b4cc38bd043582027ff0c186d59a9896e265ff3</citedby><cites>FETCH-LOGICAL-c319t-af132994f2b681a69119c22f2b4cc38bd043582027ff0c186d59a9896e265ff3</cites><orcidid>0000-0002-7600-9939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-07841-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-07841-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Xianghai</creatorcontrib><creatorcontrib>Tao, Jingzhe</creatorcontrib><creatorcontrib>Shen, Yutong</creatorcontrib><creatorcontrib>Bai, Shifu</creatorcontrib><creatorcontrib>Song, Chuanming</creatorcontrib><title>A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high-frequency coefficients based on NSST have strong directional neighborhood correlation within the same sub-band and parent-children correlation between sub-bands in the same direction. In order to combine these two kinds of correlations, we design a type of weighted directional neighborhood templates which can be used for any number of direction sub-bands to depict the direction correlation, and use the tree structure to model the correlation between parent-children coefficients. Experiments show that the proposed method in this paper can provide a fused MS image with high spatial resolution, which can provide convenience for subsequent applications such as classification and target recognition.</description><subject>Banded structure</subject><subject>Coefficients</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Correlation analysis</subject><subject>Data Structures and Information Theory</subject><subject>Multimedia Information Systems</subject><subject>Neighborhoods</subject><subject>Remote sensing</subject><subject>Spatial resolution</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Target recognition</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURQdRsFb_gKuA69G8fMxMlqX4BUWFdh8ymaQzpU1qkln4700dwZ2rl0fOvTxOUdwCvgeM64cIgBkpMYgS1w2Dkp8VM-A1LeuawHl-0waXNcdwWVzFuMMYKk7YrDAL9LZeb9CHcrFX4Wjc4LboYFLvO9SqaDrkHeqGYHQavFN75Myw7Vsfep8J7UMwe3X6Qsp1KAVjUExh1GkMBh1U0n0uvC4urNpHc_M758Xm6XGzfClX78-vy8Wq1BREKpUFSoRglrRVA6oSAEITklemNW3aDjPKG4JJbS3W0FQdF0o0ojKk4tbSeXE31R6D_xxNTHLnx5CPjpIQKhgDwiFTZKJ08DEGY-UxDAcVviRgebIpJ5sy25Q_NiXPITqFYobd1oS_6n9S35zAeAU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Wang, Xianghai</creator><creator>Tao, Jingzhe</creator><creator>Shen, Yutong</creator><creator>Bai, Shifu</creator><creator>Song, Chuanming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7600-9939</orcidid></search><sort><creationdate>20190901</creationdate><title>A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching</title><author>Wang, Xianghai ; Tao, Jingzhe ; Shen, Yutong ; Bai, Shifu ; Song, Chuanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-af132994f2b681a69119c22f2b4cc38bd043582027ff0c186d59a9896e265ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Banded structure</topic><topic>Coefficients</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Correlation analysis</topic><topic>Data Structures and Information Theory</topic><topic>Multimedia Information Systems</topic><topic>Neighborhoods</topic><topic>Remote sensing</topic><topic>Spatial resolution</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xianghai</creatorcontrib><creatorcontrib>Tao, Jingzhe</creatorcontrib><creatorcontrib>Shen, Yutong</creatorcontrib><creatorcontrib>Bai, Shifu</creatorcontrib><creatorcontrib>Song, Chuanming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xianghai</au><au>Tao, Jingzhe</au><au>Shen, Yutong</au><au>Bai, Shifu</au><au>Song, Chuanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>78</volume><issue>18</issue><spage>26787</spage><epage>26806</epage><pages>26787-26806</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high-frequency coefficients based on NSST have strong directional neighborhood correlation within the same sub-band and parent-children correlation between sub-bands in the same direction. In order to combine these two kinds of correlations, we design a type of weighted directional neighborhood templates which can be used for any number of direction sub-bands to depict the direction correlation, and use the tree structure to model the correlation between parent-children coefficients. Experiments show that the proposed method in this paper can provide a fused MS image with high spatial resolution, which can provide convenience for subsequent applications such as classification and target recognition.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-07841-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7600-9939</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2019-09, Vol.78 (18), p.26787-26806 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2239441251 |
source | SpringerNature Journals |
subjects | Banded structure Coefficients Computer Communication Networks Computer Science Correlation analysis Data Structures and Information Theory Multimedia Information Systems Neighborhoods Remote sensing Spatial resolution Special Purpose and Application-Based Systems Target recognition |
title | A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NSST%20Pansharpening%20method%20based%20on%20directional%20neighborhood%20correlation%20and%20tree%20structure%20matching&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Wang,%20Xianghai&rft.date=2019-09-01&rft.volume=78&rft.issue=18&rft.spage=26787&rft.epage=26806&rft.pages=26787-26806&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-07841-5&rft_dat=%3Cproquest_cross%3E2239441251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239441251&rft_id=info:pmid/&rfr_iscdi=true |