A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching

In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2019-09, Vol.78 (18), p.26787-26806
Hauptverfasser: Wang, Xianghai, Tao, Jingzhe, Shen, Yutong, Bai, Shifu, Song, Chuanming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26806
container_issue 18
container_start_page 26787
container_title Multimedia tools and applications
container_volume 78
creator Wang, Xianghai
Tao, Jingzhe
Shen, Yutong
Bai, Shifu
Song, Chuanming
description In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high-frequency coefficients based on NSST have strong directional neighborhood correlation within the same sub-band and parent-children correlation between sub-bands in the same direction. In order to combine these two kinds of correlations, we design a type of weighted directional neighborhood templates which can be used for any number of direction sub-bands to depict the direction correlation, and use the tree structure to model the correlation between parent-children coefficients. Experiments show that the proposed method in this paper can provide a fused MS image with high spatial resolution, which can provide convenience for subsequent applications such as classification and target recognition.
doi_str_mv 10.1007/s11042-019-07841-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239441251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239441251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-af132994f2b681a69119c22f2b4cc38bd043582027ff0c186d59a9896e265ff3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURQdRsFb_gKuA69G8fMxMlqX4BUWFdh8ymaQzpU1qkln4700dwZ2rl0fOvTxOUdwCvgeM64cIgBkpMYgS1w2Dkp8VM-A1LeuawHl-0waXNcdwWVzFuMMYKk7YrDAL9LZeb9CHcrFX4Wjc4LboYFLvO9SqaDrkHeqGYHQavFN75Myw7Vsfep8J7UMwe3X6Qsp1KAVjUExh1GkMBh1U0n0uvC4urNpHc_M758Xm6XGzfClX78-vy8Wq1BREKpUFSoRglrRVA6oSAEITklemNW3aDjPKG4JJbS3W0FQdF0o0ojKk4tbSeXE31R6D_xxNTHLnx5CPjpIQKhgDwiFTZKJ08DEGY-UxDAcVviRgebIpJ5sy25Q_NiXPITqFYobd1oS_6n9S35zAeAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239441251</pqid></control><display><type>article</type><title>A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching</title><source>SpringerNature Journals</source><creator>Wang, Xianghai ; Tao, Jingzhe ; Shen, Yutong ; Bai, Shifu ; Song, Chuanming</creator><creatorcontrib>Wang, Xianghai ; Tao, Jingzhe ; Shen, Yutong ; Bai, Shifu ; Song, Chuanming</creatorcontrib><description>In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high-frequency coefficients based on NSST have strong directional neighborhood correlation within the same sub-band and parent-children correlation between sub-bands in the same direction. In order to combine these two kinds of correlations, we design a type of weighted directional neighborhood templates which can be used for any number of direction sub-bands to depict the direction correlation, and use the tree structure to model the correlation between parent-children coefficients. Experiments show that the proposed method in this paper can provide a fused MS image with high spatial resolution, which can provide convenience for subsequent applications such as classification and target recognition.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-07841-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banded structure ; Coefficients ; Computer Communication Networks ; Computer Science ; Correlation analysis ; Data Structures and Information Theory ; Multimedia Information Systems ; Neighborhoods ; Remote sensing ; Spatial resolution ; Special Purpose and Application-Based Systems ; Target recognition</subject><ispartof>Multimedia tools and applications, 2019-09, Vol.78 (18), p.26787-26806</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-af132994f2b681a69119c22f2b4cc38bd043582027ff0c186d59a9896e265ff3</citedby><cites>FETCH-LOGICAL-c319t-af132994f2b681a69119c22f2b4cc38bd043582027ff0c186d59a9896e265ff3</cites><orcidid>0000-0002-7600-9939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-019-07841-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-019-07841-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Xianghai</creatorcontrib><creatorcontrib>Tao, Jingzhe</creatorcontrib><creatorcontrib>Shen, Yutong</creatorcontrib><creatorcontrib>Bai, Shifu</creatorcontrib><creatorcontrib>Song, Chuanming</creatorcontrib><title>A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high-frequency coefficients based on NSST have strong directional neighborhood correlation within the same sub-band and parent-children correlation between sub-bands in the same direction. In order to combine these two kinds of correlations, we design a type of weighted directional neighborhood templates which can be used for any number of direction sub-bands to depict the direction correlation, and use the tree structure to model the correlation between parent-children coefficients. Experiments show that the proposed method in this paper can provide a fused MS image with high spatial resolution, which can provide convenience for subsequent applications such as classification and target recognition.</description><subject>Banded structure</subject><subject>Coefficients</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Correlation analysis</subject><subject>Data Structures and Information Theory</subject><subject>Multimedia Information Systems</subject><subject>Neighborhoods</subject><subject>Remote sensing</subject><subject>Spatial resolution</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Target recognition</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURQdRsFb_gKuA69G8fMxMlqX4BUWFdh8ymaQzpU1qkln4700dwZ2rl0fOvTxOUdwCvgeM64cIgBkpMYgS1w2Dkp8VM-A1LeuawHl-0waXNcdwWVzFuMMYKk7YrDAL9LZeb9CHcrFX4Wjc4LboYFLvO9SqaDrkHeqGYHQavFN75Myw7Vsfep8J7UMwe3X6Qsp1KAVjUExh1GkMBh1U0n0uvC4urNpHc_M758Xm6XGzfClX78-vy8Wq1BREKpUFSoRglrRVA6oSAEITklemNW3aDjPKG4JJbS3W0FQdF0o0ojKk4tbSeXE31R6D_xxNTHLnx5CPjpIQKhgDwiFTZKJ08DEGY-UxDAcVviRgebIpJ5sy25Q_NiXPITqFYobd1oS_6n9S35zAeAU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Wang, Xianghai</creator><creator>Tao, Jingzhe</creator><creator>Shen, Yutong</creator><creator>Bai, Shifu</creator><creator>Song, Chuanming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7600-9939</orcidid></search><sort><creationdate>20190901</creationdate><title>A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching</title><author>Wang, Xianghai ; Tao, Jingzhe ; Shen, Yutong ; Bai, Shifu ; Song, Chuanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-af132994f2b681a69119c22f2b4cc38bd043582027ff0c186d59a9896e265ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Banded structure</topic><topic>Coefficients</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Correlation analysis</topic><topic>Data Structures and Information Theory</topic><topic>Multimedia Information Systems</topic><topic>Neighborhoods</topic><topic>Remote sensing</topic><topic>Spatial resolution</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xianghai</creatorcontrib><creatorcontrib>Tao, Jingzhe</creatorcontrib><creatorcontrib>Shen, Yutong</creatorcontrib><creatorcontrib>Bai, Shifu</creatorcontrib><creatorcontrib>Song, Chuanming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xianghai</au><au>Tao, Jingzhe</au><au>Shen, Yutong</au><au>Bai, Shifu</au><au>Song, Chuanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>78</volume><issue>18</issue><spage>26787</spage><epage>26806</epage><pages>26787-26806</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In this paper, we propose a multispectral (MS) remote sensing image pansharpening method based on non-subsampled shearlet transform (NSST). By analyzing the NSST high-frequency coefficients correlation of several datasets which are fromWorldView-2 (WV2) and Quick-Bird (QB), we verified that the high-frequency coefficients based on NSST have strong directional neighborhood correlation within the same sub-band and parent-children correlation between sub-bands in the same direction. In order to combine these two kinds of correlations, we design a type of weighted directional neighborhood templates which can be used for any number of direction sub-bands to depict the direction correlation, and use the tree structure to model the correlation between parent-children coefficients. Experiments show that the proposed method in this paper can provide a fused MS image with high spatial resolution, which can provide convenience for subsequent applications such as classification and target recognition.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-019-07841-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7600-9939</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2019-09, Vol.78 (18), p.26787-26806
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2239441251
source SpringerNature Journals
subjects Banded structure
Coefficients
Computer Communication Networks
Computer Science
Correlation analysis
Data Structures and Information Theory
Multimedia Information Systems
Neighborhoods
Remote sensing
Spatial resolution
Special Purpose and Application-Based Systems
Target recognition
title A NSST Pansharpening method based on directional neighborhood correlation and tree structure matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NSST%20Pansharpening%20method%20based%20on%20directional%20neighborhood%20correlation%20and%20tree%20structure%20matching&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Wang,%20Xianghai&rft.date=2019-09-01&rft.volume=78&rft.issue=18&rft.spage=26787&rft.epage=26806&rft.pages=26787-26806&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-07841-5&rft_dat=%3Cproquest_cross%3E2239441251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239441251&rft_id=info:pmid/&rfr_iscdi=true