Solvable Cubic Resonant Systems

Weakly nonlinear analysis of resonant PDEs in recent literature has generated a number of resonant systems for slow evolution of the normal mode amplitudes that possess remarkable properties. Despite being infinite-dimensional Hamiltonian systems with cubic nonlinearities in the equations of motion,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-07, Vol.369 (2), p.433-456
Hauptverfasser: Biasi, Anxo, Bizoń, Piotr, Evnin, Oleg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 2
container_start_page 433
container_title Communications in mathematical physics
container_volume 369
creator Biasi, Anxo
Bizoń, Piotr
Evnin, Oleg
description Weakly nonlinear analysis of resonant PDEs in recent literature has generated a number of resonant systems for slow evolution of the normal mode amplitudes that possess remarkable properties. Despite being infinite-dimensional Hamiltonian systems with cubic nonlinearities in the equations of motion, these resonant systems admit special analytic solutions, which furthermore display periodic perfect energy returns to the initial configurations. Here, we construct a very large class of resonant systems that shares these properties that have so far been seen in specific examples emerging from a few standard equations of mathematical physics (the Gross–Pitaevskii equation, nonlinear wave equations in Anti-de Sitter spacetime). Our analysis provides an additional conserved quantity for all of these systems, which has been previously known for the resonant system of the two-dimensional Gross–Pitaevskii equation, but not for any other cases.
doi_str_mv 10.1007/s00220-019-03365-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239256960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239256960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-33de2e4324f5487d8f170fafb4c692df78016a973d288aab6a504b9a998beb223</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoWEd_wI0F19H3kjZNljLoKAwIjq5D0iYyQ6cdk1aY-XqjFdy5eot3z71wCLlEuEGA6jYCMAYUUFHgXJT0cEQyLDijoFAckwwAgXKB4pScxbgBAMWEyMjVqm8_jW1dPh_tus5fXOw70w35ah8Ht43n5MSbNrqL3zsjbw_3r_NHunxePM3vlrTmqAbKeeOYS3uFLwtZNdJjBd54W9RCscZXElAYVfGGSWmMFaaEwiqjlLTOMsZn5Hrq3YX-Y3Rx0Jt-DF2a1OmrWCmUgJRiU6oOfYzBeb0L660Je42gv0XoSYROIvSPCH1IEJ-gmMLduwt_1f9QXwpoXzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239256960</pqid></control><display><type>article</type><title>Solvable Cubic Resonant Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Biasi, Anxo ; Bizoń, Piotr ; Evnin, Oleg</creator><creatorcontrib>Biasi, Anxo ; Bizoń, Piotr ; Evnin, Oleg</creatorcontrib><description>Weakly nonlinear analysis of resonant PDEs in recent literature has generated a number of resonant systems for slow evolution of the normal mode amplitudes that possess remarkable properties. Despite being infinite-dimensional Hamiltonian systems with cubic nonlinearities in the equations of motion, these resonant systems admit special analytic solutions, which furthermore display periodic perfect energy returns to the initial configurations. Here, we construct a very large class of resonant systems that shares these properties that have so far been seen in specific examples emerging from a few standard equations of mathematical physics (the Gross–Pitaevskii equation, nonlinear wave equations in Anti-de Sitter spacetime). Our analysis provides an additional conserved quantity for all of these systems, which has been previously known for the resonant system of the two-dimensional Gross–Pitaevskii equation, but not for any other cases.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03365-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Equations of motion ; Exact solutions ; Hamiltonian functions ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Nonlinear analysis ; Nonlinear equations ; Nonlinear systems ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Systems analysis ; Theoretical ; Wave equations</subject><ispartof>Communications in mathematical physics, 2019-07, Vol.369 (2), p.433-456</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-33de2e4324f5487d8f170fafb4c692df78016a973d288aab6a504b9a998beb223</citedby><cites>FETCH-LOGICAL-c319t-33de2e4324f5487d8f170fafb4c692df78016a973d288aab6a504b9a998beb223</cites><orcidid>0000-0002-3523-091X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-019-03365-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-019-03365-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Biasi, Anxo</creatorcontrib><creatorcontrib>Bizoń, Piotr</creatorcontrib><creatorcontrib>Evnin, Oleg</creatorcontrib><title>Solvable Cubic Resonant Systems</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>Weakly nonlinear analysis of resonant PDEs in recent literature has generated a number of resonant systems for slow evolution of the normal mode amplitudes that possess remarkable properties. Despite being infinite-dimensional Hamiltonian systems with cubic nonlinearities in the equations of motion, these resonant systems admit special analytic solutions, which furthermore display periodic perfect energy returns to the initial configurations. Here, we construct a very large class of resonant systems that shares these properties that have so far been seen in specific examples emerging from a few standard equations of mathematical physics (the Gross–Pitaevskii equation, nonlinear wave equations in Anti-de Sitter spacetime). Our analysis provides an additional conserved quantity for all of these systems, which has been previously known for the resonant system of the two-dimensional Gross–Pitaevskii equation, but not for any other cases.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Equations of motion</subject><subject>Exact solutions</subject><subject>Hamiltonian functions</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Nonlinear analysis</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Systems analysis</subject><subject>Theoretical</subject><subject>Wave equations</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoWEd_wI0F19H3kjZNljLoKAwIjq5D0iYyQ6cdk1aY-XqjFdy5eot3z71wCLlEuEGA6jYCMAYUUFHgXJT0cEQyLDijoFAckwwAgXKB4pScxbgBAMWEyMjVqm8_jW1dPh_tus5fXOw70w35ah8Ht43n5MSbNrqL3zsjbw_3r_NHunxePM3vlrTmqAbKeeOYS3uFLwtZNdJjBd54W9RCscZXElAYVfGGSWmMFaaEwiqjlLTOMsZn5Hrq3YX-Y3Rx0Jt-DF2a1OmrWCmUgJRiU6oOfYzBeb0L660Je42gv0XoSYROIvSPCH1IEJ-gmMLduwt_1f9QXwpoXzI</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Biasi, Anxo</creator><creator>Bizoń, Piotr</creator><creator>Evnin, Oleg</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3523-091X</orcidid></search><sort><creationdate>20190701</creationdate><title>Solvable Cubic Resonant Systems</title><author>Biasi, Anxo ; Bizoń, Piotr ; Evnin, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-33de2e4324f5487d8f170fafb4c692df78016a973d288aab6a504b9a998beb223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Equations of motion</topic><topic>Exact solutions</topic><topic>Hamiltonian functions</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Nonlinear analysis</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Systems analysis</topic><topic>Theoretical</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biasi, Anxo</creatorcontrib><creatorcontrib>Bizoń, Piotr</creatorcontrib><creatorcontrib>Evnin, Oleg</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biasi, Anxo</au><au>Bizoń, Piotr</au><au>Evnin, Oleg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvable Cubic Resonant Systems</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>369</volume><issue>2</issue><spage>433</spage><epage>456</epage><pages>433-456</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>Weakly nonlinear analysis of resonant PDEs in recent literature has generated a number of resonant systems for slow evolution of the normal mode amplitudes that possess remarkable properties. Despite being infinite-dimensional Hamiltonian systems with cubic nonlinearities in the equations of motion, these resonant systems admit special analytic solutions, which furthermore display periodic perfect energy returns to the initial configurations. Here, we construct a very large class of resonant systems that shares these properties that have so far been seen in specific examples emerging from a few standard equations of mathematical physics (the Gross–Pitaevskii equation, nonlinear wave equations in Anti-de Sitter spacetime). Our analysis provides an additional conserved quantity for all of these systems, which has been previously known for the resonant system of the two-dimensional Gross–Pitaevskii equation, but not for any other cases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03365-z</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3523-091X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2019-07, Vol.369 (2), p.433-456
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2239256960
source Springer Nature - Complete Springer Journals
subjects Classical and Quantum Gravitation
Complex Systems
Equations of motion
Exact solutions
Hamiltonian functions
Mathematical analysis
Mathematical and Computational Physics
Mathematical Physics
Nonlinear analysis
Nonlinear equations
Nonlinear systems
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Systems analysis
Theoretical
Wave equations
title Solvable Cubic Resonant Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvable%20Cubic%20Resonant%20Systems&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Biasi,%20Anxo&rft.date=2019-07-01&rft.volume=369&rft.issue=2&rft.spage=433&rft.epage=456&rft.pages=433-456&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03365-z&rft_dat=%3Cproquest_cross%3E2239256960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239256960&rft_id=info:pmid/&rfr_iscdi=true