Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings

Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2019-05, Vol.124 (10), p.5400-5417
Hauptverfasser: Thiéblemont, R., Ayarzagüena, B., Matthes, K., Bekki, S., Abalichin, J., Langematz, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5417
container_issue 10
container_start_page 5400
container_title Journal of geophysical research. Atmospheres
container_volume 124
creator Thiéblemont, R.
Ayarzagüena, B.
Matthes, K.
Bekki, S.
Abalichin, J.
Langematz, U.
description Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multidecadal integrations of the fully coupled chemistry‐climate models Community Earth System Model version 1 (Whole Atmosphere Community Climate Model) and ECHAM/Modular Earth Submodel System Atmospheric Chemistry‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely, the quasi‐biennial oscillation, sea surface temperature (SST) variability, and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; that is, events which occur first in the midstratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10 and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that quasi‐biennial oscillation and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs. Key Points Northern Hemisphere stratospheric final warmings variability and dynamics are studied in multidecadal chemistry‐climate experiments Stratospheric final warmings characteristics in spring are influenced by the polar vortex variability in preceding winter Quasi‐biennial oscillation, sea surface temperature, and ozone depleting substances influence stratospheric final warming variability
doi_str_mv 10.1029/2018JD029852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239244459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239244459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3456-c40fbf27c798a09f28867232c07aebad59711912133bacc6f23dddebcb9746b23</originalsourceid><addsrcrecordid>eNp9kEtLw0AQxxdRsNTe_AABr8buI8nuHrW1taUgWF8HIWw2u3VLmtTZROm3d0tFPDmXef1m-M8gdE7wFcFUDikmYj4OkUjpEepRkslYSJkd_8b89RQNvF_jYAKzJE166G0M7tOAj1RdRssOrNImWrpVraqosdGsbg2ouu5C-qzAqcJVrt3tWzcNmFBdtqDaxm_fDTgdTdx-8EXBxtUrf4ZOrKq8Gfz4Pnqa3D6O7uLF_XQ2ul7EOojIYp1gW1jKNZdCYWmpEBmnjGrMlSlUmUpOiCSUMFYorTNLWVmWptCF5ElWUNZHF4e9W2g-OuPbfN10EJT4nFImaZIkqQzU5YHS0HgPxuZbcBsFu5zgfP_C_O8LA84O-JerzO5fNp9PH8ZpGm5h38Twckk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239244459</pqid></control><display><type>article</type><title>Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Thiéblemont, R. ; Ayarzagüena, B. ; Matthes, K. ; Bekki, S. ; Abalichin, J. ; Langematz, U.</creator><creatorcontrib>Thiéblemont, R. ; Ayarzagüena, B. ; Matthes, K. ; Bekki, S. ; Abalichin, J. ; Langematz, U.</creatorcontrib><description>Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multidecadal integrations of the fully coupled chemistry‐climate models Community Earth System Model version 1 (Whole Atmosphere Community Climate Model) and ECHAM/Modular Earth Submodel System Atmospheric Chemistry‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely, the quasi‐biennial oscillation, sea surface temperature (SST) variability, and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; that is, events which occur first in the midstratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10 and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that quasi‐biennial oscillation and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs. Key Points Northern Hemisphere stratospheric final warmings variability and dynamics are studied in multidecadal chemistry‐climate experiments Stratospheric final warmings characteristics in spring are influenced by the polar vortex variability in preceding winter Quasi‐biennial oscillation, sea surface temperature, and ozone depleting substances influence stratospheric final warming variability</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD029852</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Annual variations ; Anthropogenic factors ; Atmospheric chemistry ; Atmospheric models ; Chemistry ; Climate ; Climate models ; Communities ; dynamics ; Earth ; Earth atmosphere ; Evolution ; Geophysics ; Human influences ; Interannual variability ; modeling ; Modular systems ; Modulators ; Organic chemistry ; Ozone ; polar vortex ; Quasi-biennial oscillation ; Sea surface ; Sea surface temperature ; Sensitivity analysis ; Stratosphere ; stratosphere‐troposphere coupling ; Stratospheric warming ; Surface circulation ; Surface temperature ; Tropospheric circulation ; Upper stratosphere ; Variability</subject><ispartof>Journal of geophysical research. Atmospheres, 2019-05, Vol.124 (10), p.5400-5417</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3456-c40fbf27c798a09f28867232c07aebad59711912133bacc6f23dddebcb9746b23</citedby><cites>FETCH-LOGICAL-c3456-c40fbf27c798a09f28867232c07aebad59711912133bacc6f23dddebcb9746b23</cites><orcidid>0000-0003-1801-3072 ; 0000-0003-3959-5673 ; 0000-0003-0160-2276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JD029852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JD029852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Thiéblemont, R.</creatorcontrib><creatorcontrib>Ayarzagüena, B.</creatorcontrib><creatorcontrib>Matthes, K.</creatorcontrib><creatorcontrib>Bekki, S.</creatorcontrib><creatorcontrib>Abalichin, J.</creatorcontrib><creatorcontrib>Langematz, U.</creatorcontrib><title>Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings</title><title>Journal of geophysical research. Atmospheres</title><description>Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multidecadal integrations of the fully coupled chemistry‐climate models Community Earth System Model version 1 (Whole Atmosphere Community Climate Model) and ECHAM/Modular Earth Submodel System Atmospheric Chemistry‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely, the quasi‐biennial oscillation, sea surface temperature (SST) variability, and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; that is, events which occur first in the midstratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10 and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that quasi‐biennial oscillation and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs. Key Points Northern Hemisphere stratospheric final warmings variability and dynamics are studied in multidecadal chemistry‐climate experiments Stratospheric final warmings characteristics in spring are influenced by the polar vortex variability in preceding winter Quasi‐biennial oscillation, sea surface temperature, and ozone depleting substances influence stratospheric final warming variability</description><subject>Annual variations</subject><subject>Anthropogenic factors</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric models</subject><subject>Chemistry</subject><subject>Climate</subject><subject>Climate models</subject><subject>Communities</subject><subject>dynamics</subject><subject>Earth</subject><subject>Earth atmosphere</subject><subject>Evolution</subject><subject>Geophysics</subject><subject>Human influences</subject><subject>Interannual variability</subject><subject>modeling</subject><subject>Modular systems</subject><subject>Modulators</subject><subject>Organic chemistry</subject><subject>Ozone</subject><subject>polar vortex</subject><subject>Quasi-biennial oscillation</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sensitivity analysis</subject><subject>Stratosphere</subject><subject>stratosphere‐troposphere coupling</subject><subject>Stratospheric warming</subject><subject>Surface circulation</subject><subject>Surface temperature</subject><subject>Tropospheric circulation</subject><subject>Upper stratosphere</subject><subject>Variability</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AQxxdRsNTe_AABr8buI8nuHrW1taUgWF8HIWw2u3VLmtTZROm3d0tFPDmXef1m-M8gdE7wFcFUDikmYj4OkUjpEepRkslYSJkd_8b89RQNvF_jYAKzJE166G0M7tOAj1RdRssOrNImWrpVraqosdGsbg2ouu5C-qzAqcJVrt3tWzcNmFBdtqDaxm_fDTgdTdx-8EXBxtUrf4ZOrKq8Gfz4Pnqa3D6O7uLF_XQ2ul7EOojIYp1gW1jKNZdCYWmpEBmnjGrMlSlUmUpOiCSUMFYorTNLWVmWptCF5ElWUNZHF4e9W2g-OuPbfN10EJT4nFImaZIkqQzU5YHS0HgPxuZbcBsFu5zgfP_C_O8LA84O-JerzO5fNp9PH8ZpGm5h38Twckk</recordid><startdate>20190527</startdate><enddate>20190527</enddate><creator>Thiéblemont, R.</creator><creator>Ayarzagüena, B.</creator><creator>Matthes, K.</creator><creator>Bekki, S.</creator><creator>Abalichin, J.</creator><creator>Langematz, U.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1801-3072</orcidid><orcidid>https://orcid.org/0000-0003-3959-5673</orcidid><orcidid>https://orcid.org/0000-0003-0160-2276</orcidid></search><sort><creationdate>20190527</creationdate><title>Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings</title><author>Thiéblemont, R. ; Ayarzagüena, B. ; Matthes, K. ; Bekki, S. ; Abalichin, J. ; Langematz, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3456-c40fbf27c798a09f28867232c07aebad59711912133bacc6f23dddebcb9746b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annual variations</topic><topic>Anthropogenic factors</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric models</topic><topic>Chemistry</topic><topic>Climate</topic><topic>Climate models</topic><topic>Communities</topic><topic>dynamics</topic><topic>Earth</topic><topic>Earth atmosphere</topic><topic>Evolution</topic><topic>Geophysics</topic><topic>Human influences</topic><topic>Interannual variability</topic><topic>modeling</topic><topic>Modular systems</topic><topic>Modulators</topic><topic>Organic chemistry</topic><topic>Ozone</topic><topic>polar vortex</topic><topic>Quasi-biennial oscillation</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sensitivity analysis</topic><topic>Stratosphere</topic><topic>stratosphere‐troposphere coupling</topic><topic>Stratospheric warming</topic><topic>Surface circulation</topic><topic>Surface temperature</topic><topic>Tropospheric circulation</topic><topic>Upper stratosphere</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiéblemont, R.</creatorcontrib><creatorcontrib>Ayarzagüena, B.</creatorcontrib><creatorcontrib>Matthes, K.</creatorcontrib><creatorcontrib>Bekki, S.</creatorcontrib><creatorcontrib>Abalichin, J.</creatorcontrib><creatorcontrib>Langematz, U.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiéblemont, R.</au><au>Ayarzagüena, B.</au><au>Matthes, K.</au><au>Bekki, S.</au><au>Abalichin, J.</au><au>Langematz, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2019-05-27</date><risdate>2019</risdate><volume>124</volume><issue>10</issue><spage>5400</spage><epage>5417</epage><pages>5400-5417</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multidecadal integrations of the fully coupled chemistry‐climate models Community Earth System Model version 1 (Whole Atmosphere Community Climate Model) and ECHAM/Modular Earth Submodel System Atmospheric Chemistry‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely, the quasi‐biennial oscillation, sea surface temperature (SST) variability, and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; that is, events which occur first in the midstratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10 and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that quasi‐biennial oscillation and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs. Key Points Northern Hemisphere stratospheric final warmings variability and dynamics are studied in multidecadal chemistry‐climate experiments Stratospheric final warmings characteristics in spring are influenced by the polar vortex variability in preceding winter Quasi‐biennial oscillation, sea surface temperature, and ozone depleting substances influence stratospheric final warming variability</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JD029852</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1801-3072</orcidid><orcidid>https://orcid.org/0000-0003-3959-5673</orcidid><orcidid>https://orcid.org/0000-0003-0160-2276</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2019-05, Vol.124 (10), p.5400-5417
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_2239244459
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Annual variations
Anthropogenic factors
Atmospheric chemistry
Atmospheric models
Chemistry
Climate
Climate models
Communities
dynamics
Earth
Earth atmosphere
Evolution
Geophysics
Human influences
Interannual variability
modeling
Modular systems
Modulators
Organic chemistry
Ozone
polar vortex
Quasi-biennial oscillation
Sea surface
Sea surface temperature
Sensitivity analysis
Stratosphere
stratosphere‐troposphere coupling
Stratospheric warming
Surface circulation
Surface temperature
Tropospheric circulation
Upper stratosphere
Variability
title Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drivers%20and%20Surface%20Signal%20of%20Interannual%20Variability%20of%20Boreal%20Stratospheric%20Final%20Warmings&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Thi%C3%A9blemont,%20R.&rft.date=2019-05-27&rft.volume=124&rft.issue=10&rft.spage=5400&rft.epage=5417&rft.pages=5400-5417&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD029852&rft_dat=%3Cproquest_cross%3E2239244459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239244459&rft_id=info:pmid/&rfr_iscdi=true