Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings
Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work ai...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2019-05, Vol.124 (10), p.5400-5417 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5417 |
---|---|
container_issue | 10 |
container_start_page | 5400 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 124 |
creator | Thiéblemont, R. Ayarzagüena, B. Matthes, K. Bekki, S. Abalichin, J. Langematz, U. |
description | Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multidecadal integrations of the fully coupled chemistry‐climate models Community Earth System Model version 1 (Whole Atmosphere Community Climate Model) and ECHAM/Modular Earth Submodel System Atmospheric Chemistry‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely, the quasi‐biennial oscillation, sea surface temperature (SST) variability, and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; that is, events which occur first in the midstratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10 and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that quasi‐biennial oscillation and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs.
Key Points
Northern Hemisphere stratospheric final warmings variability and dynamics are studied in multidecadal chemistry‐climate experiments
Stratospheric final warmings characteristics in spring are influenced by the polar vortex variability in preceding winter
Quasi‐biennial oscillation, sea surface temperature, and ozone depleting substances influence stratospheric final warming variability |
doi_str_mv | 10.1029/2018JD029852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239244459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239244459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3456-c40fbf27c798a09f28867232c07aebad59711912133bacc6f23dddebcb9746b23</originalsourceid><addsrcrecordid>eNp9kEtLw0AQxxdRsNTe_AABr8buI8nuHrW1taUgWF8HIWw2u3VLmtTZROm3d0tFPDmXef1m-M8gdE7wFcFUDikmYj4OkUjpEepRkslYSJkd_8b89RQNvF_jYAKzJE166G0M7tOAj1RdRssOrNImWrpVraqosdGsbg2ouu5C-qzAqcJVrt3tWzcNmFBdtqDaxm_fDTgdTdx-8EXBxtUrf4ZOrKq8Gfz4Pnqa3D6O7uLF_XQ2ul7EOojIYp1gW1jKNZdCYWmpEBmnjGrMlSlUmUpOiCSUMFYorTNLWVmWptCF5ElWUNZHF4e9W2g-OuPbfN10EJT4nFImaZIkqQzU5YHS0HgPxuZbcBsFu5zgfP_C_O8LA84O-JerzO5fNp9PH8ZpGm5h38Twckk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239244459</pqid></control><display><type>article</type><title>Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Thiéblemont, R. ; Ayarzagüena, B. ; Matthes, K. ; Bekki, S. ; Abalichin, J. ; Langematz, U.</creator><creatorcontrib>Thiéblemont, R. ; Ayarzagüena, B. ; Matthes, K. ; Bekki, S. ; Abalichin, J. ; Langematz, U.</creatorcontrib><description>Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multidecadal integrations of the fully coupled chemistry‐climate models Community Earth System Model version 1 (Whole Atmosphere Community Climate Model) and ECHAM/Modular Earth Submodel System Atmospheric Chemistry‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely, the quasi‐biennial oscillation, sea surface temperature (SST) variability, and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; that is, events which occur first in the midstratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10 and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that quasi‐biennial oscillation and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs.
Key Points
Northern Hemisphere stratospheric final warmings variability and dynamics are studied in multidecadal chemistry‐climate experiments
Stratospheric final warmings characteristics in spring are influenced by the polar vortex variability in preceding winter
Quasi‐biennial oscillation, sea surface temperature, and ozone depleting substances influence stratospheric final warming variability</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD029852</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Annual variations ; Anthropogenic factors ; Atmospheric chemistry ; Atmospheric models ; Chemistry ; Climate ; Climate models ; Communities ; dynamics ; Earth ; Earth atmosphere ; Evolution ; Geophysics ; Human influences ; Interannual variability ; modeling ; Modular systems ; Modulators ; Organic chemistry ; Ozone ; polar vortex ; Quasi-biennial oscillation ; Sea surface ; Sea surface temperature ; Sensitivity analysis ; Stratosphere ; stratosphere‐troposphere coupling ; Stratospheric warming ; Surface circulation ; Surface temperature ; Tropospheric circulation ; Upper stratosphere ; Variability</subject><ispartof>Journal of geophysical research. Atmospheres, 2019-05, Vol.124 (10), p.5400-5417</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3456-c40fbf27c798a09f28867232c07aebad59711912133bacc6f23dddebcb9746b23</citedby><cites>FETCH-LOGICAL-c3456-c40fbf27c798a09f28867232c07aebad59711912133bacc6f23dddebcb9746b23</cites><orcidid>0000-0003-1801-3072 ; 0000-0003-3959-5673 ; 0000-0003-0160-2276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JD029852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JD029852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Thiéblemont, R.</creatorcontrib><creatorcontrib>Ayarzagüena, B.</creatorcontrib><creatorcontrib>Matthes, K.</creatorcontrib><creatorcontrib>Bekki, S.</creatorcontrib><creatorcontrib>Abalichin, J.</creatorcontrib><creatorcontrib>Langematz, U.</creatorcontrib><title>Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings</title><title>Journal of geophysical research. Atmospheres</title><description>Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multidecadal integrations of the fully coupled chemistry‐climate models Community Earth System Model version 1 (Whole Atmosphere Community Climate Model) and ECHAM/Modular Earth Submodel System Atmospheric Chemistry‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely, the quasi‐biennial oscillation, sea surface temperature (SST) variability, and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; that is, events which occur first in the midstratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10 and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that quasi‐biennial oscillation and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs.
Key Points
Northern Hemisphere stratospheric final warmings variability and dynamics are studied in multidecadal chemistry‐climate experiments
Stratospheric final warmings characteristics in spring are influenced by the polar vortex variability in preceding winter
Quasi‐biennial oscillation, sea surface temperature, and ozone depleting substances influence stratospheric final warming variability</description><subject>Annual variations</subject><subject>Anthropogenic factors</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric models</subject><subject>Chemistry</subject><subject>Climate</subject><subject>Climate models</subject><subject>Communities</subject><subject>dynamics</subject><subject>Earth</subject><subject>Earth atmosphere</subject><subject>Evolution</subject><subject>Geophysics</subject><subject>Human influences</subject><subject>Interannual variability</subject><subject>modeling</subject><subject>Modular systems</subject><subject>Modulators</subject><subject>Organic chemistry</subject><subject>Ozone</subject><subject>polar vortex</subject><subject>Quasi-biennial oscillation</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sensitivity analysis</subject><subject>Stratosphere</subject><subject>stratosphere‐troposphere coupling</subject><subject>Stratospheric warming</subject><subject>Surface circulation</subject><subject>Surface temperature</subject><subject>Tropospheric circulation</subject><subject>Upper stratosphere</subject><subject>Variability</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AQxxdRsNTe_AABr8buI8nuHrW1taUgWF8HIWw2u3VLmtTZROm3d0tFPDmXef1m-M8gdE7wFcFUDikmYj4OkUjpEepRkslYSJkd_8b89RQNvF_jYAKzJE166G0M7tOAj1RdRssOrNImWrpVraqosdGsbg2ouu5C-qzAqcJVrt3tWzcNmFBdtqDaxm_fDTgdTdx-8EXBxtUrf4ZOrKq8Gfz4Pnqa3D6O7uLF_XQ2ul7EOojIYp1gW1jKNZdCYWmpEBmnjGrMlSlUmUpOiCSUMFYorTNLWVmWptCF5ElWUNZHF4e9W2g-OuPbfN10EJT4nFImaZIkqQzU5YHS0HgPxuZbcBsFu5zgfP_C_O8LA84O-JerzO5fNp9PH8ZpGm5h38Twckk</recordid><startdate>20190527</startdate><enddate>20190527</enddate><creator>Thiéblemont, R.</creator><creator>Ayarzagüena, B.</creator><creator>Matthes, K.</creator><creator>Bekki, S.</creator><creator>Abalichin, J.</creator><creator>Langematz, U.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1801-3072</orcidid><orcidid>https://orcid.org/0000-0003-3959-5673</orcidid><orcidid>https://orcid.org/0000-0003-0160-2276</orcidid></search><sort><creationdate>20190527</creationdate><title>Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings</title><author>Thiéblemont, R. ; Ayarzagüena, B. ; Matthes, K. ; Bekki, S. ; Abalichin, J. ; Langematz, U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3456-c40fbf27c798a09f28867232c07aebad59711912133bacc6f23dddebcb9746b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annual variations</topic><topic>Anthropogenic factors</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric models</topic><topic>Chemistry</topic><topic>Climate</topic><topic>Climate models</topic><topic>Communities</topic><topic>dynamics</topic><topic>Earth</topic><topic>Earth atmosphere</topic><topic>Evolution</topic><topic>Geophysics</topic><topic>Human influences</topic><topic>Interannual variability</topic><topic>modeling</topic><topic>Modular systems</topic><topic>Modulators</topic><topic>Organic chemistry</topic><topic>Ozone</topic><topic>polar vortex</topic><topic>Quasi-biennial oscillation</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sensitivity analysis</topic><topic>Stratosphere</topic><topic>stratosphere‐troposphere coupling</topic><topic>Stratospheric warming</topic><topic>Surface circulation</topic><topic>Surface temperature</topic><topic>Tropospheric circulation</topic><topic>Upper stratosphere</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiéblemont, R.</creatorcontrib><creatorcontrib>Ayarzagüena, B.</creatorcontrib><creatorcontrib>Matthes, K.</creatorcontrib><creatorcontrib>Bekki, S.</creatorcontrib><creatorcontrib>Abalichin, J.</creatorcontrib><creatorcontrib>Langematz, U.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiéblemont, R.</au><au>Ayarzagüena, B.</au><au>Matthes, K.</au><au>Bekki, S.</au><au>Abalichin, J.</au><au>Langematz, U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2019-05-27</date><risdate>2019</risdate><volume>124</volume><issue>10</issue><spage>5400</spage><epage>5417</epage><pages>5400-5417</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Springtime stratospheric final warming (SFW) variability has been suggested to be linked to the tropospheric circulation, particularly over the North Atlantic sector. These findings, however, are based on reanalysis data that cover a rather short period of time (1979 to present). The present work aims to improve the understanding of drivers, trends and surface impact of dynamical variability of boreal SFWs using chemistry‐climate models. We use multidecadal integrations of the fully coupled chemistry‐climate models Community Earth System Model version 1 (Whole Atmosphere Community Climate Model) and ECHAM/Modular Earth Submodel System Atmospheric Chemistry‐O. Four sensitivity experiments are analyzed to assess the impact of external factors; namely, the quasi‐biennial oscillation, sea surface temperature (SST) variability, and anthropogenic emissions. SFWs are classified into two types with respect to their vertical development; that is, events which occur first in the midstratosphere (10‐hPa first SFWs) or first in the upper stratosphere (1‐hPa first SFWs). Our results confirm previous reanalysis results regarding the differences in the time evolution of stratospheric conditions and near‐surface circulation between 10 and 1‐hPa first SFWs. Additionally, a tripolar SST pattern is, for the first time, identified over the North Atlantic in spring months related to the SFW variability. Our analysis of the influence of remote modulators on SFWs revealed that the occurrence of major warmings in the previous winter favors the occurrence of 10‐hPa first SFWs later on. We further found that quasi‐biennial oscillation and SST variability significantly affect the ratio between 1‐hPa first and 10‐hPa first SFWs. Finally, our results suggest that ozone recovery may impact the timing of the occurrence of 1‐hPa first SFWs.
Key Points
Northern Hemisphere stratospheric final warmings variability and dynamics are studied in multidecadal chemistry‐climate experiments
Stratospheric final warmings characteristics in spring are influenced by the polar vortex variability in preceding winter
Quasi‐biennial oscillation, sea surface temperature, and ozone depleting substances influence stratospheric final warming variability</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JD029852</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1801-3072</orcidid><orcidid>https://orcid.org/0000-0003-3959-5673</orcidid><orcidid>https://orcid.org/0000-0003-0160-2276</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2019-05, Vol.124 (10), p.5400-5417 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_2239244459 |
source | Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Annual variations Anthropogenic factors Atmospheric chemistry Atmospheric models Chemistry Climate Climate models Communities dynamics Earth Earth atmosphere Evolution Geophysics Human influences Interannual variability modeling Modular systems Modulators Organic chemistry Ozone polar vortex Quasi-biennial oscillation Sea surface Sea surface temperature Sensitivity analysis Stratosphere stratosphere‐troposphere coupling Stratospheric warming Surface circulation Surface temperature Tropospheric circulation Upper stratosphere Variability |
title | Drivers and Surface Signal of Interannual Variability of Boreal Stratospheric Final Warmings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drivers%20and%20Surface%20Signal%20of%20Interannual%20Variability%20of%20Boreal%20Stratospheric%20Final%20Warmings&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Thi%C3%A9blemont,%20R.&rft.date=2019-05-27&rft.volume=124&rft.issue=10&rft.spage=5400&rft.epage=5417&rft.pages=5400-5417&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD029852&rft_dat=%3Cproquest_cross%3E2239244459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239244459&rft_id=info:pmid/&rfr_iscdi=true |