Shear Alfvén and acoustic continuum in general axisymmetric toroidal geometry

The equations describing the continuous spectrum of shear Alfvén and ion sound waves propagating along magnetic field lines are introduced and solved in the ballooning space for general geometry in the ideal MHD limit. This approach is equivalent to earlier analyses by Chu et al. 1992 [Phys. Fluids...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-09
Hauptverfasser: Matteo Valerio Falessi, Carlevaro, Nakia, Fusco, Valeria, Vlad, Gregorio, Zonca, Fulvio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Matteo Valerio Falessi
Carlevaro, Nakia
Fusco, Valeria
Vlad, Gregorio
Zonca, Fulvio
description The equations describing the continuous spectrum of shear Alfvén and ion sound waves propagating along magnetic field lines are introduced and solved in the ballooning space for general geometry in the ideal MHD limit. This approach is equivalent to earlier analyses by Chu et al. 1992 [Phys. Fluids B 4, 3713 (1992)] but the present formulation in the ballooning space allows to readily extend it to include gyrokinetic and three-dimensional equilibrium effects. In particular, following Chen and Zonca 2017 [Phys. Plasmas 24, 072511 (2017)], the MHD limit is adopted to illustrate the general methodology in a simple case, and the equations are solved within the framework of Floquet and Hill's equation theory. The connection of shear Alfvén and ion sound wave continuum structures to the generalized plasma inertia in the general fishbone like dispersion relation is also illustrated and discussed. As an application, the continuous frequency spectrum is calculated for a reference equilibrium of the Divertor Tokamak Test facility. The results are compared with those obtained by the MARS code adopting the standard methodology, demonstrating excellent agreement.
doi_str_mv 10.48550/arxiv.1906.04451
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2238847927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2238847927</sourcerecordid><originalsourceid>FETCH-proquest_journals_22388479273</originalsourceid><addsrcrecordid>eNqNijsKwjAAQIMgKNoDuAWcW_O17SiiOLnoXkKNNaVNNJ9Sj-Q5vJgVPIDTg_ceAAuMEpZxjlbC9qpLcI7WCWKM4xGYEkpxnDFCJiByrkYIkXVKOKdTcDzdpLBw01y790tDoS9QlCY4r0pYGu2VDqGFSsNKamlFA0Wv3LNtpbfD4Y016jLYSpqves7B-CoaJ6MfZ2C53523h_huzSNI54vaBKuHVBBCs4ylOUnpf9cHwEpF8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238847927</pqid></control><display><type>article</type><title>Shear Alfvén and acoustic continuum in general axisymmetric toroidal geometry</title><source>Free E- Journals</source><creator>Matteo Valerio Falessi ; Carlevaro, Nakia ; Fusco, Valeria ; Vlad, Gregorio ; Zonca, Fulvio</creator><creatorcontrib>Matteo Valerio Falessi ; Carlevaro, Nakia ; Fusco, Valeria ; Vlad, Gregorio ; Zonca, Fulvio</creatorcontrib><description>The equations describing the continuous spectrum of shear Alfvén and ion sound waves propagating along magnetic field lines are introduced and solved in the ballooning space for general geometry in the ideal MHD limit. This approach is equivalent to earlier analyses by Chu et al. 1992 [Phys. Fluids B 4, 3713 (1992)] but the present formulation in the ballooning space allows to readily extend it to include gyrokinetic and three-dimensional equilibrium effects. In particular, following Chen and Zonca 2017 [Phys. Plasmas 24, 072511 (2017)], the MHD limit is adopted to illustrate the general methodology in a simple case, and the equations are solved within the framework of Floquet and Hill's equation theory. The connection of shear Alfvén and ion sound wave continuum structures to the generalized plasma inertia in the general fishbone like dispersion relation is also illustrated and discussed. As an application, the continuous frequency spectrum is calculated for a reference equilibrium of the Divertor Tokamak Test facility. The results are compared with those obtained by the MARS code adopting the standard methodology, demonstrating excellent agreement.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1906.04451</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Frequency spectrum ; Magnetism ; Mathematical analysis ; Shear ; Sound propagation ; Sound waves ; Tokamak devices ; Wave propagation</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Matteo Valerio Falessi</creatorcontrib><creatorcontrib>Carlevaro, Nakia</creatorcontrib><creatorcontrib>Fusco, Valeria</creatorcontrib><creatorcontrib>Vlad, Gregorio</creatorcontrib><creatorcontrib>Zonca, Fulvio</creatorcontrib><title>Shear Alfvén and acoustic continuum in general axisymmetric toroidal geometry</title><title>arXiv.org</title><description>The equations describing the continuous spectrum of shear Alfvén and ion sound waves propagating along magnetic field lines are introduced and solved in the ballooning space for general geometry in the ideal MHD limit. This approach is equivalent to earlier analyses by Chu et al. 1992 [Phys. Fluids B 4, 3713 (1992)] but the present formulation in the ballooning space allows to readily extend it to include gyrokinetic and three-dimensional equilibrium effects. In particular, following Chen and Zonca 2017 [Phys. Plasmas 24, 072511 (2017)], the MHD limit is adopted to illustrate the general methodology in a simple case, and the equations are solved within the framework of Floquet and Hill's equation theory. The connection of shear Alfvén and ion sound wave continuum structures to the generalized plasma inertia in the general fishbone like dispersion relation is also illustrated and discussed. As an application, the continuous frequency spectrum is calculated for a reference equilibrium of the Divertor Tokamak Test facility. The results are compared with those obtained by the MARS code adopting the standard methodology, demonstrating excellent agreement.</description><subject>Frequency spectrum</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Shear</subject><subject>Sound propagation</subject><subject>Sound waves</subject><subject>Tokamak devices</subject><subject>Wave propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNijsKwjAAQIMgKNoDuAWcW_O17SiiOLnoXkKNNaVNNJ9Sj-Q5vJgVPIDTg_ceAAuMEpZxjlbC9qpLcI7WCWKM4xGYEkpxnDFCJiByrkYIkXVKOKdTcDzdpLBw01y790tDoS9QlCY4r0pYGu2VDqGFSsNKamlFA0Wv3LNtpbfD4Y016jLYSpqves7B-CoaJ6MfZ2C53523h_huzSNI54vaBKuHVBBCs4ylOUnpf9cHwEpF8A</recordid><startdate>20190906</startdate><enddate>20190906</enddate><creator>Matteo Valerio Falessi</creator><creator>Carlevaro, Nakia</creator><creator>Fusco, Valeria</creator><creator>Vlad, Gregorio</creator><creator>Zonca, Fulvio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190906</creationdate><title>Shear Alfvén and acoustic continuum in general axisymmetric toroidal geometry</title><author>Matteo Valerio Falessi ; Carlevaro, Nakia ; Fusco, Valeria ; Vlad, Gregorio ; Zonca, Fulvio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22388479273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Frequency spectrum</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Shear</topic><topic>Sound propagation</topic><topic>Sound waves</topic><topic>Tokamak devices</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Matteo Valerio Falessi</creatorcontrib><creatorcontrib>Carlevaro, Nakia</creatorcontrib><creatorcontrib>Fusco, Valeria</creatorcontrib><creatorcontrib>Vlad, Gregorio</creatorcontrib><creatorcontrib>Zonca, Fulvio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matteo Valerio Falessi</au><au>Carlevaro, Nakia</au><au>Fusco, Valeria</au><au>Vlad, Gregorio</au><au>Zonca, Fulvio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Shear Alfvén and acoustic continuum in general axisymmetric toroidal geometry</atitle><jtitle>arXiv.org</jtitle><date>2019-09-06</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The equations describing the continuous spectrum of shear Alfvén and ion sound waves propagating along magnetic field lines are introduced and solved in the ballooning space for general geometry in the ideal MHD limit. This approach is equivalent to earlier analyses by Chu et al. 1992 [Phys. Fluids B 4, 3713 (1992)] but the present formulation in the ballooning space allows to readily extend it to include gyrokinetic and three-dimensional equilibrium effects. In particular, following Chen and Zonca 2017 [Phys. Plasmas 24, 072511 (2017)], the MHD limit is adopted to illustrate the general methodology in a simple case, and the equations are solved within the framework of Floquet and Hill's equation theory. The connection of shear Alfvén and ion sound wave continuum structures to the generalized plasma inertia in the general fishbone like dispersion relation is also illustrated and discussed. As an application, the continuous frequency spectrum is calculated for a reference equilibrium of the Divertor Tokamak Test facility. The results are compared with those obtained by the MARS code adopting the standard methodology, demonstrating excellent agreement.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1906.04451</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2238847927
source Free E- Journals
subjects Frequency spectrum
Magnetism
Mathematical analysis
Shear
Sound propagation
Sound waves
Tokamak devices
Wave propagation
title Shear Alfvén and acoustic continuum in general axisymmetric toroidal geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Shear%20Alfv%C3%A9n%20and%20acoustic%20continuum%20in%20general%20axisymmetric%20toroidal%20geometry&rft.jtitle=arXiv.org&rft.au=Matteo%20Valerio%20Falessi&rft.date=2019-09-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1906.04451&rft_dat=%3Cproquest%3E2238847927%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238847927&rft_id=info:pmid/&rfr_iscdi=true