Reduced graphene oxide modified titania photoanodes for fabrication of the efficient dye-sensitized solar cell

In the present investigation, a novel photoanode material TiO 2 -reduced graphene oxide (rGO) nanocomposite has been prepared and coated by doctor blade technique for the fabrication of dye-sensitized solar cells. The reduction of graphene oxide to reduced graphene oxide and the crystallization of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-07, Vol.30 (14), p.12966-12980
Hauptverfasser: Ramamoorthy, R., Eswaramoorthi, V., Sundararajan, M., Boobalan, M., Sivagami, A. D., Williams, R. Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12980
container_issue 14
container_start_page 12966
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Ramamoorthy, R.
Eswaramoorthi, V.
Sundararajan, M.
Boobalan, M.
Sivagami, A. D.
Williams, R. Victor
description In the present investigation, a novel photoanode material TiO 2 -reduced graphene oxide (rGO) nanocomposite has been prepared and coated by doctor blade technique for the fabrication of dye-sensitized solar cells. The reduction of graphene oxide to reduced graphene oxide and the crystallization of the material has been achieved by one step thermal annealing of photoanodes at 400 °C. The UV–Visible absorption and photoluminescence studies were confirming the following attributes that, the reduction in band gap energy and the existence of longer lifetime of charge carriers in TiO 2 -rGO nanocomposite photoanodes respectively. Fourier transform infra-red characterization was confirming the bonding between TiO 2 and rGO. The X-ray diffraction pattern fortified the formation of anatase titania with reduced crystallite size due to the presence of graphene. The scanning electron microscopy images of TiO 2 -rGO nanocomposite photoanodes revealed the presence of spherical nanoparticles and agglomeration of graphene sheets in TiO 2 matrix. In addition, Raman and transmission electron microscopy analysis ensured the interaction between TiO 2 and graphene. The solar cell with TiO 2 -rGO nanocomposite photoanode has 6.61% efficiency which was 30% higher than that of the pristine TiO 2 nanoparticles based device. The electrochemical impedance spectroscopy analysis proposed the reduction in charge transfer resistance which was achieved in the newly developed photoanode employed devices.
doi_str_mv 10.1007/s10854-019-01659-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2238817250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2238817250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-bb1d8224fb23d48c15f07f1fb4fa135e1bdab134a8758faa9878fe9a7fc106e83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-NpvsUYpfUBBEwVvIbiZtyjapSQrqr3d1BW8ehoHhed-BB6FzSi4pIfIqU6JEXRHajtOIthIHaEaF5FWt2OshmpFWyKoWjB2jk5w3hJCm5mqGwhPYfQ8Wr5LZrSEAju_eAt5G650f78UXE7zBu3Us0YRoIWMXE3amS743xceAo8NlDRic872HULD9gCpDyL74z7Ejx8Ek3MMwnKIjZ4YMZ797jl5ub54X99Xy8e5hcb2sei6aUnUdtYqx2nWM21r1VDgiHXVd7QzlAmhnTUd5bZQUyhnTKqkctEa6npIGFJ-ji6l3l-LbHnLRm7hPYXypGeNKUckEGSk2UX2KOSdwepf81qQPTYn-9qonr3r0qn-8ajGG-BTKIxxWkP6q_0l9Af-SfZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238817250</pqid></control><display><type>article</type><title>Reduced graphene oxide modified titania photoanodes for fabrication of the efficient dye-sensitized solar cell</title><source>SpringerLink (Online service)</source><creator>Ramamoorthy, R. ; Eswaramoorthi, V. ; Sundararajan, M. ; Boobalan, M. ; Sivagami, A. D. ; Williams, R. Victor</creator><creatorcontrib>Ramamoorthy, R. ; Eswaramoorthi, V. ; Sundararajan, M. ; Boobalan, M. ; Sivagami, A. D. ; Williams, R. Victor</creatorcontrib><description>In the present investigation, a novel photoanode material TiO 2 -reduced graphene oxide (rGO) nanocomposite has been prepared and coated by doctor blade technique for the fabrication of dye-sensitized solar cells. The reduction of graphene oxide to reduced graphene oxide and the crystallization of the material has been achieved by one step thermal annealing of photoanodes at 400 °C. The UV–Visible absorption and photoluminescence studies were confirming the following attributes that, the reduction in band gap energy and the existence of longer lifetime of charge carriers in TiO 2 -rGO nanocomposite photoanodes respectively. Fourier transform infra-red characterization was confirming the bonding between TiO 2 and rGO. The X-ray diffraction pattern fortified the formation of anatase titania with reduced crystallite size due to the presence of graphene. The scanning electron microscopy images of TiO 2 -rGO nanocomposite photoanodes revealed the presence of spherical nanoparticles and agglomeration of graphene sheets in TiO 2 matrix. In addition, Raman and transmission electron microscopy analysis ensured the interaction between TiO 2 and graphene. The solar cell with TiO 2 -rGO nanocomposite photoanode has 6.61% efficiency which was 30% higher than that of the pristine TiO 2 nanoparticles based device. The electrochemical impedance spectroscopy analysis proposed the reduction in charge transfer resistance which was achieved in the newly developed photoanode employed devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-01659-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Crystallites ; Crystallization ; Current carriers ; Diffraction patterns ; Dye-sensitized solar cells ; Dyes ; Electrochemical impedance spectroscopy ; Energy gap ; Fourier transforms ; Graphene ; Materials Science ; Microscopy ; Nanocomposites ; Nanoparticles ; Optical and Electronic Materials ; Photoanodes ; Photoluminescence ; Photovoltaic cells ; Reduction ; Scanning electron microscopy ; Titanium dioxide ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2019-07, Vol.30 (14), p.12966-12980</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-bb1d8224fb23d48c15f07f1fb4fa135e1bdab134a8758faa9878fe9a7fc106e83</citedby><cites>FETCH-LOGICAL-c356t-bb1d8224fb23d48c15f07f1fb4fa135e1bdab134a8758faa9878fe9a7fc106e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-01659-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-01659-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ramamoorthy, R.</creatorcontrib><creatorcontrib>Eswaramoorthi, V.</creatorcontrib><creatorcontrib>Sundararajan, M.</creatorcontrib><creatorcontrib>Boobalan, M.</creatorcontrib><creatorcontrib>Sivagami, A. D.</creatorcontrib><creatorcontrib>Williams, R. Victor</creatorcontrib><title>Reduced graphene oxide modified titania photoanodes for fabrication of the efficient dye-sensitized solar cell</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In the present investigation, a novel photoanode material TiO 2 -reduced graphene oxide (rGO) nanocomposite has been prepared and coated by doctor blade technique for the fabrication of dye-sensitized solar cells. The reduction of graphene oxide to reduced graphene oxide and the crystallization of the material has been achieved by one step thermal annealing of photoanodes at 400 °C. The UV–Visible absorption and photoluminescence studies were confirming the following attributes that, the reduction in band gap energy and the existence of longer lifetime of charge carriers in TiO 2 -rGO nanocomposite photoanodes respectively. Fourier transform infra-red characterization was confirming the bonding between TiO 2 and rGO. The X-ray diffraction pattern fortified the formation of anatase titania with reduced crystallite size due to the presence of graphene. The scanning electron microscopy images of TiO 2 -rGO nanocomposite photoanodes revealed the presence of spherical nanoparticles and agglomeration of graphene sheets in TiO 2 matrix. In addition, Raman and transmission electron microscopy analysis ensured the interaction between TiO 2 and graphene. The solar cell with TiO 2 -rGO nanocomposite photoanode has 6.61% efficiency which was 30% higher than that of the pristine TiO 2 nanoparticles based device. The electrochemical impedance spectroscopy analysis proposed the reduction in charge transfer resistance which was achieved in the newly developed photoanode employed devices.</description><subject>Anatase</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Current carriers</subject><subject>Diffraction patterns</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Energy gap</subject><subject>Fourier transforms</subject><subject>Graphene</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Photoanodes</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Reduction</subject><subject>Scanning electron microscopy</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-NpvsUYpfUBBEwVvIbiZtyjapSQrqr3d1BW8ehoHhed-BB6FzSi4pIfIqU6JEXRHajtOIthIHaEaF5FWt2OshmpFWyKoWjB2jk5w3hJCm5mqGwhPYfQ8Wr5LZrSEAju_eAt5G650f78UXE7zBu3Us0YRoIWMXE3amS743xceAo8NlDRic872HULD9gCpDyL74z7Ejx8Ek3MMwnKIjZ4YMZ797jl5ub54X99Xy8e5hcb2sei6aUnUdtYqx2nWM21r1VDgiHXVd7QzlAmhnTUd5bZQUyhnTKqkctEa6npIGFJ-ji6l3l-LbHnLRm7hPYXypGeNKUckEGSk2UX2KOSdwepf81qQPTYn-9qonr3r0qn-8ajGG-BTKIxxWkP6q_0l9Af-SfZs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Ramamoorthy, R.</creator><creator>Eswaramoorthi, V.</creator><creator>Sundararajan, M.</creator><creator>Boobalan, M.</creator><creator>Sivagami, A. D.</creator><creator>Williams, R. Victor</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20190701</creationdate><title>Reduced graphene oxide modified titania photoanodes for fabrication of the efficient dye-sensitized solar cell</title><author>Ramamoorthy, R. ; Eswaramoorthi, V. ; Sundararajan, M. ; Boobalan, M. ; Sivagami, A. D. ; Williams, R. Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-bb1d8224fb23d48c15f07f1fb4fa135e1bdab134a8758faa9878fe9a7fc106e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anatase</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Current carriers</topic><topic>Diffraction patterns</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Energy gap</topic><topic>Fourier transforms</topic><topic>Graphene</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Photoanodes</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Reduction</topic><topic>Scanning electron microscopy</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramamoorthy, R.</creatorcontrib><creatorcontrib>Eswaramoorthi, V.</creatorcontrib><creatorcontrib>Sundararajan, M.</creatorcontrib><creatorcontrib>Boobalan, M.</creatorcontrib><creatorcontrib>Sivagami, A. D.</creatorcontrib><creatorcontrib>Williams, R. Victor</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramamoorthy, R.</au><au>Eswaramoorthi, V.</au><au>Sundararajan, M.</au><au>Boobalan, M.</au><au>Sivagami, A. D.</au><au>Williams, R. Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced graphene oxide modified titania photoanodes for fabrication of the efficient dye-sensitized solar cell</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>30</volume><issue>14</issue><spage>12966</spage><epage>12980</epage><pages>12966-12980</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In the present investigation, a novel photoanode material TiO 2 -reduced graphene oxide (rGO) nanocomposite has been prepared and coated by doctor blade technique for the fabrication of dye-sensitized solar cells. The reduction of graphene oxide to reduced graphene oxide and the crystallization of the material has been achieved by one step thermal annealing of photoanodes at 400 °C. The UV–Visible absorption and photoluminescence studies were confirming the following attributes that, the reduction in band gap energy and the existence of longer lifetime of charge carriers in TiO 2 -rGO nanocomposite photoanodes respectively. Fourier transform infra-red characterization was confirming the bonding between TiO 2 and rGO. The X-ray diffraction pattern fortified the formation of anatase titania with reduced crystallite size due to the presence of graphene. The scanning electron microscopy images of TiO 2 -rGO nanocomposite photoanodes revealed the presence of spherical nanoparticles and agglomeration of graphene sheets in TiO 2 matrix. In addition, Raman and transmission electron microscopy analysis ensured the interaction between TiO 2 and graphene. The solar cell with TiO 2 -rGO nanocomposite photoanode has 6.61% efficiency which was 30% higher than that of the pristine TiO 2 nanoparticles based device. The electrochemical impedance spectroscopy analysis proposed the reduction in charge transfer resistance which was achieved in the newly developed photoanode employed devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-01659-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-07, Vol.30 (14), p.12966-12980
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2238817250
source SpringerLink (Online service)
subjects Anatase
Characterization and Evaluation of Materials
Charge transfer
Chemistry and Materials Science
Crystallites
Crystallization
Current carriers
Diffraction patterns
Dye-sensitized solar cells
Dyes
Electrochemical impedance spectroscopy
Energy gap
Fourier transforms
Graphene
Materials Science
Microscopy
Nanocomposites
Nanoparticles
Optical and Electronic Materials
Photoanodes
Photoluminescence
Photovoltaic cells
Reduction
Scanning electron microscopy
Titanium dioxide
Transmission electron microscopy
X-ray diffraction
title Reduced graphene oxide modified titania photoanodes for fabrication of the efficient dye-sensitized solar cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20graphene%20oxide%20modified%20titania%20photoanodes%20for%20fabrication%20of%20the%20efficient%20dye-sensitized%20solar%20cell&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ramamoorthy,%20R.&rft.date=2019-07-01&rft.volume=30&rft.issue=14&rft.spage=12966&rft.epage=12980&rft.pages=12966-12980&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-01659-5&rft_dat=%3Cproquest_cross%3E2238817250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238817250&rft_id=info:pmid/&rfr_iscdi=true