Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls
We propose a method for constructing asymptotic eigenfunctions of the operator ̂L = ∇ D ( x 1 ,x 2 )∇ defined in a domain Ω ? R 2 with coefficient D ( x ) degenerating on the boundary ∂ Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eige...
Gespeichert in:
Veröffentlicht in: | Differential equations 2019-05, Vol.55 (5), p.644-657 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 657 |
---|---|
container_issue | 5 |
container_start_page | 644 |
container_title | Differential equations |
container_volume | 55 |
creator | Anikin, A. Yu Dobrokhotov, S. Yu Nazaikinskii, V. E. Tsvetkova, A. V. |
description | We propose a method for constructing asymptotic eigenfunctions of the operator
̂L
= ∇
D
(
x
1
,x
2
)∇ defined in a domain Ω ? R
2
with coefficient
D
(
x
) degenerating on the boundary
∂
Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eigenfunctions are associated with analogs of Liouville tori of integrable geodesic flows with the metric defined by the Hamiltonian system with Hamiltonian
D
(
x
)
p
2
and degenerating on
∂
Ω. The situation is unusual compared, say, with the case of integrable two-dimensional billiards, because the momentum components of trajectories on such “tori” are infinite over the boundary, where
D
(
x
)
=
0, although their projections onto the plane R
2
are compact sets, as a rule, diffeomorphic to annuli in R
2
. We refer to such systems as billiards with semi-rigid walls. |
doi_str_mv | 10.1134/S0012266119050069 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2238624701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722053084</galeid><sourcerecordid>A722053084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2709-c3ef0d8df5c8de0ec57e917365abf80073e3b0a0b1ccc73f7b56da7e0992dd4b3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EEkvhAbhZ4gKHlLG9iZPjtltopUqVaBHHyLHHqavEXmyvSp8AXoKX65PgsEgcEJrDSPN9v9H8IeQ1g2PGxPr9NQDjvGkY66AGaLonZMUaaCsBrXhKVotcLfpz8iKlOwDoJKtX5OcmPcy7HLLT9MyN6O3e6-yCTzRYmm-RXu0wqhwiffzxffv227uS6Bat82io81TRm_tQbd2MPhVMTXQbZrUI3hRf6bjgzo80eHqREz0Je29UfPhtOHHT5FQ0id67fEuvcXbVJzc6Q7-oaUovyTOrpoSv_uQj8vnD2c3peXV59fHidHNZaS6hq7RAC6Y1ttatQUBdS-yYFE2tBtsCSIFiAAUD01pLYeVQN0ZJhK7jxqwHcUTeHPruYvi6x5T7u7CPZZnUcy7ahq8lsOI6PrhGNWHvvA05Kl3ClLF18OUopb6RnENdzr4uADsAOoaUItp-F91cdu8Z9Mvb-n_eVhh-YFLx-hHj31H-D_0CYS6cMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238624701</pqid></control><display><type>article</type><title>Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls</title><source>Springer Nature - Complete Springer Journals</source><creator>Anikin, A. Yu ; Dobrokhotov, S. Yu ; Nazaikinskii, V. E. ; Tsvetkova, A. V.</creator><creatorcontrib>Anikin, A. Yu ; Dobrokhotov, S. Yu ; Nazaikinskii, V. E. ; Tsvetkova, A. V.</creatorcontrib><description>We propose a method for constructing asymptotic eigenfunctions of the operator
̂L
= ∇
D
(
x
1
,x
2
)∇ defined in a domain Ω ? R
2
with coefficient
D
(
x
) degenerating on the boundary
∂
Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eigenfunctions are associated with analogs of Liouville tori of integrable geodesic flows with the metric defined by the Hamiltonian system with Hamiltonian
D
(
x
)
p
2
and degenerating on
∂
Ω. The situation is unusual compared, say, with the case of integrable two-dimensional billiards, because the momentum components of trajectories on such “tori” are infinite over the boundary, where
D
(
x
)
=
0, although their projections onto the plane R
2
are compact sets, as a rule, diffeomorphic to annuli in R
2
. We refer to such systems as billiards with semi-rigid walls.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266119050069</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic methods ; Asymptotic properties ; Billiards ; Comparative analysis ; Difference and Functional Equations ; Differential equations ; Eigenvectors ; Hamiltonian functions ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Rigid walls ; Toruses ; Water waves</subject><ispartof>Differential equations, 2019-05, Vol.55 (5), p.644-657</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2709-c3ef0d8df5c8de0ec57e917365abf80073e3b0a0b1ccc73f7b56da7e0992dd4b3</citedby><cites>FETCH-LOGICAL-c2709-c3ef0d8df5c8de0ec57e917365abf80073e3b0a0b1ccc73f7b56da7e0992dd4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266119050069$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266119050069$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Anikin, A. Yu</creatorcontrib><creatorcontrib>Dobrokhotov, S. Yu</creatorcontrib><creatorcontrib>Nazaikinskii, V. E.</creatorcontrib><creatorcontrib>Tsvetkova, A. V.</creatorcontrib><title>Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We propose a method for constructing asymptotic eigenfunctions of the operator
̂L
= ∇
D
(
x
1
,x
2
)∇ defined in a domain Ω ? R
2
with coefficient
D
(
x
) degenerating on the boundary
∂
Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eigenfunctions are associated with analogs of Liouville tori of integrable geodesic flows with the metric defined by the Hamiltonian system with Hamiltonian
D
(
x
)
p
2
and degenerating on
∂
Ω. The situation is unusual compared, say, with the case of integrable two-dimensional billiards, because the momentum components of trajectories on such “tori” are infinite over the boundary, where
D
(
x
)
=
0, although their projections onto the plane R
2
are compact sets, as a rule, diffeomorphic to annuli in R
2
. We refer to such systems as billiards with semi-rigid walls.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Billiards</subject><subject>Comparative analysis</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Eigenvectors</subject><subject>Hamiltonian functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Rigid walls</subject><subject>Toruses</subject><subject>Water waves</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxi0EEkvhAbhZ4gKHlLG9iZPjtltopUqVaBHHyLHHqavEXmyvSp8AXoKX65PgsEgcEJrDSPN9v9H8IeQ1g2PGxPr9NQDjvGkY66AGaLonZMUaaCsBrXhKVotcLfpz8iKlOwDoJKtX5OcmPcy7HLLT9MyN6O3e6-yCTzRYmm-RXu0wqhwiffzxffv227uS6Bat82io81TRm_tQbd2MPhVMTXQbZrUI3hRf6bjgzo80eHqREz0Je29UfPhtOHHT5FQ0id67fEuvcXbVJzc6Q7-oaUovyTOrpoSv_uQj8vnD2c3peXV59fHidHNZaS6hq7RAC6Y1ttatQUBdS-yYFE2tBtsCSIFiAAUD01pLYeVQN0ZJhK7jxqwHcUTeHPruYvi6x5T7u7CPZZnUcy7ahq8lsOI6PrhGNWHvvA05Kl3ClLF18OUopb6RnENdzr4uADsAOoaUItp-F91cdu8Z9Mvb-n_eVhh-YFLx-hHj31H-D_0CYS6cMQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Anikin, A. Yu</creator><creator>Dobrokhotov, S. Yu</creator><creator>Nazaikinskii, V. E.</creator><creator>Tsvetkova, A. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190501</creationdate><title>Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls</title><author>Anikin, A. Yu ; Dobrokhotov, S. Yu ; Nazaikinskii, V. E. ; Tsvetkova, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2709-c3ef0d8df5c8de0ec57e917365abf80073e3b0a0b1ccc73f7b56da7e0992dd4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Billiards</topic><topic>Comparative analysis</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Eigenvectors</topic><topic>Hamiltonian functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Rigid walls</topic><topic>Toruses</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anikin, A. Yu</creatorcontrib><creatorcontrib>Dobrokhotov, S. Yu</creatorcontrib><creatorcontrib>Nazaikinskii, V. E.</creatorcontrib><creatorcontrib>Tsvetkova, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anikin, A. Yu</au><au>Dobrokhotov, S. Yu</au><au>Nazaikinskii, V. E.</au><au>Tsvetkova, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>55</volume><issue>5</issue><spage>644</spage><epage>657</epage><pages>644-657</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We propose a method for constructing asymptotic eigenfunctions of the operator
̂L
= ∇
D
(
x
1
,x
2
)∇ defined in a domain Ω ? R
2
with coefficient
D
(
x
) degenerating on the boundary
∂
Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eigenfunctions are associated with analogs of Liouville tori of integrable geodesic flows with the metric defined by the Hamiltonian system with Hamiltonian
D
(
x
)
p
2
and degenerating on
∂
Ω. The situation is unusual compared, say, with the case of integrable two-dimensional billiards, because the momentum components of trajectories on such “tori” are infinite over the boundary, where
D
(
x
)
=
0, although their projections onto the plane R
2
are compact sets, as a rule, diffeomorphic to annuli in R
2
. We refer to such systems as billiards with semi-rigid walls.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266119050069</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2019-05, Vol.55 (5), p.644-657 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_2238624701 |
source | Springer Nature - Complete Springer Journals |
subjects | Asymptotic methods Asymptotic properties Billiards Comparative analysis Difference and Functional Equations Differential equations Eigenvectors Hamiltonian functions Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Rigid walls Toruses Water waves |
title | Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Eigenfunctions%20of%20the%20Operator%20%E2%88%87D(x)%E2%88%87%20Defined%20in%20a%20Two-Dimensional%20Domain%20and%20Degenerating%20on%20Its%20Boundary%20and%20Billiards%20with%20Semi-Rigid%20Walls&rft.jtitle=Differential%20equations&rft.au=Anikin,%20A.%20Yu&rft.date=2019-05-01&rft.volume=55&rft.issue=5&rft.spage=644&rft.epage=657&rft.pages=644-657&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266119050069&rft_dat=%3Cgale_proqu%3EA722053084%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238624701&rft_id=info:pmid/&rft_galeid=A722053084&rfr_iscdi=true |