Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls

We propose a method for constructing asymptotic eigenfunctions of the operator ̂L = ∇ D ( x 1 ,x 2 )∇ defined in a domain Ω ? R 2 with coefficient D ( x ) degenerating on the boundary ∂ Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eige...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2019-05, Vol.55 (5), p.644-657
Hauptverfasser: Anikin, A. Yu, Dobrokhotov, S. Yu, Nazaikinskii, V. E., Tsvetkova, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue 5
container_start_page 644
container_title Differential equations
container_volume 55
creator Anikin, A. Yu
Dobrokhotov, S. Yu
Nazaikinskii, V. E.
Tsvetkova, A. V.
description We propose a method for constructing asymptotic eigenfunctions of the operator ̂L = ∇ D ( x 1 ,x 2 )∇ defined in a domain Ω ? R 2 with coefficient D ( x ) degenerating on the boundary ∂ Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eigenfunctions are associated with analogs of Liouville tori of integrable geodesic flows with the metric defined by the Hamiltonian system with Hamiltonian D ( x ) p 2 and degenerating on ∂ Ω. The situation is unusual compared, say, with the case of integrable two-dimensional billiards, because the momentum components of trajectories on such “tori” are infinite over the boundary, where D ( x ) = 0, although their projections onto the plane R 2 are compact sets, as a rule, diffeomorphic to annuli in R 2 . We refer to such systems as billiards with semi-rigid walls.
doi_str_mv 10.1134/S0012266119050069
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2238624701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722053084</galeid><sourcerecordid>A722053084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2709-c3ef0d8df5c8de0ec57e917365abf80073e3b0a0b1ccc73f7b56da7e0992dd4b3</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi0EEkvhAbhZ4gKHlLG9iZPjtltopUqVaBHHyLHHqavEXmyvSp8AXoKX65PgsEgcEJrDSPN9v9H8IeQ1g2PGxPr9NQDjvGkY66AGaLonZMUaaCsBrXhKVotcLfpz8iKlOwDoJKtX5OcmPcy7HLLT9MyN6O3e6-yCTzRYmm-RXu0wqhwiffzxffv227uS6Bat82io81TRm_tQbd2MPhVMTXQbZrUI3hRf6bjgzo80eHqREz0Je29UfPhtOHHT5FQ0id67fEuvcXbVJzc6Q7-oaUovyTOrpoSv_uQj8vnD2c3peXV59fHidHNZaS6hq7RAC6Y1ttatQUBdS-yYFE2tBtsCSIFiAAUD01pLYeVQN0ZJhK7jxqwHcUTeHPruYvi6x5T7u7CPZZnUcy7ahq8lsOI6PrhGNWHvvA05Kl3ClLF18OUopb6RnENdzr4uADsAOoaUItp-F91cdu8Z9Mvb-n_eVhh-YFLx-hHj31H-D_0CYS6cMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238624701</pqid></control><display><type>article</type><title>Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls</title><source>Springer Nature - Complete Springer Journals</source><creator>Anikin, A. Yu ; Dobrokhotov, S. Yu ; Nazaikinskii, V. E. ; Tsvetkova, A. V.</creator><creatorcontrib>Anikin, A. Yu ; Dobrokhotov, S. Yu ; Nazaikinskii, V. E. ; Tsvetkova, A. V.</creatorcontrib><description>We propose a method for constructing asymptotic eigenfunctions of the operator ̂L = ∇ D ( x 1 ,x 2 )∇ defined in a domain Ω ? R 2 with coefficient D ( x ) degenerating on the boundary ∂ Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eigenfunctions are associated with analogs of Liouville tori of integrable geodesic flows with the metric defined by the Hamiltonian system with Hamiltonian D ( x ) p 2 and degenerating on ∂ Ω. The situation is unusual compared, say, with the case of integrable two-dimensional billiards, because the momentum components of trajectories on such “tori” are infinite over the boundary, where D ( x ) = 0, although their projections onto the plane R 2 are compact sets, as a rule, diffeomorphic to annuli in R 2 . We refer to such systems as billiards with semi-rigid walls.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266119050069</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic methods ; Asymptotic properties ; Billiards ; Comparative analysis ; Difference and Functional Equations ; Differential equations ; Eigenvectors ; Hamiltonian functions ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Rigid walls ; Toruses ; Water waves</subject><ispartof>Differential equations, 2019-05, Vol.55 (5), p.644-657</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2709-c3ef0d8df5c8de0ec57e917365abf80073e3b0a0b1ccc73f7b56da7e0992dd4b3</citedby><cites>FETCH-LOGICAL-c2709-c3ef0d8df5c8de0ec57e917365abf80073e3b0a0b1ccc73f7b56da7e0992dd4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266119050069$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266119050069$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Anikin, A. Yu</creatorcontrib><creatorcontrib>Dobrokhotov, S. Yu</creatorcontrib><creatorcontrib>Nazaikinskii, V. E.</creatorcontrib><creatorcontrib>Tsvetkova, A. V.</creatorcontrib><title>Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We propose a method for constructing asymptotic eigenfunctions of the operator ̂L = ∇ D ( x 1 ,x 2 )∇ defined in a domain Ω ? R 2 with coefficient D ( x ) degenerating on the boundary ∂ Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eigenfunctions are associated with analogs of Liouville tori of integrable geodesic flows with the metric defined by the Hamiltonian system with Hamiltonian D ( x ) p 2 and degenerating on ∂ Ω. The situation is unusual compared, say, with the case of integrable two-dimensional billiards, because the momentum components of trajectories on such “tori” are infinite over the boundary, where D ( x ) = 0, although their projections onto the plane R 2 are compact sets, as a rule, diffeomorphic to annuli in R 2 . We refer to such systems as billiards with semi-rigid walls.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Billiards</subject><subject>Comparative analysis</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Eigenvectors</subject><subject>Hamiltonian functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Rigid walls</subject><subject>Toruses</subject><subject>Water waves</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxi0EEkvhAbhZ4gKHlLG9iZPjtltopUqVaBHHyLHHqavEXmyvSp8AXoKX65PgsEgcEJrDSPN9v9H8IeQ1g2PGxPr9NQDjvGkY66AGaLonZMUaaCsBrXhKVotcLfpz8iKlOwDoJKtX5OcmPcy7HLLT9MyN6O3e6-yCTzRYmm-RXu0wqhwiffzxffv227uS6Bat82io81TRm_tQbd2MPhVMTXQbZrUI3hRf6bjgzo80eHqREz0Je29UfPhtOHHT5FQ0id67fEuvcXbVJzc6Q7-oaUovyTOrpoSv_uQj8vnD2c3peXV59fHidHNZaS6hq7RAC6Y1ttatQUBdS-yYFE2tBtsCSIFiAAUD01pLYeVQN0ZJhK7jxqwHcUTeHPruYvi6x5T7u7CPZZnUcy7ahq8lsOI6PrhGNWHvvA05Kl3ClLF18OUopb6RnENdzr4uADsAOoaUItp-F91cdu8Z9Mvb-n_eVhh-YFLx-hHj31H-D_0CYS6cMQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Anikin, A. Yu</creator><creator>Dobrokhotov, S. Yu</creator><creator>Nazaikinskii, V. E.</creator><creator>Tsvetkova, A. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190501</creationdate><title>Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls</title><author>Anikin, A. Yu ; Dobrokhotov, S. Yu ; Nazaikinskii, V. E. ; Tsvetkova, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2709-c3ef0d8df5c8de0ec57e917365abf80073e3b0a0b1ccc73f7b56da7e0992dd4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Billiards</topic><topic>Comparative analysis</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Eigenvectors</topic><topic>Hamiltonian functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Rigid walls</topic><topic>Toruses</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anikin, A. Yu</creatorcontrib><creatorcontrib>Dobrokhotov, S. Yu</creatorcontrib><creatorcontrib>Nazaikinskii, V. E.</creatorcontrib><creatorcontrib>Tsvetkova, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anikin, A. Yu</au><au>Dobrokhotov, S. Yu</au><au>Nazaikinskii, V. E.</au><au>Tsvetkova, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>55</volume><issue>5</issue><spage>644</spage><epage>657</epage><pages>644-657</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We propose a method for constructing asymptotic eigenfunctions of the operator ̂L = ∇ D ( x 1 ,x 2 )∇ defined in a domain Ω ? R 2 with coefficient D ( x ) degenerating on the boundary ∂ Ω. Such operators arise, for example, in problems about long water waves trapped by coasts and islands. These eigenfunctions are associated with analogs of Liouville tori of integrable geodesic flows with the metric defined by the Hamiltonian system with Hamiltonian D ( x ) p 2 and degenerating on ∂ Ω. The situation is unusual compared, say, with the case of integrable two-dimensional billiards, because the momentum components of trajectories on such “tori” are infinite over the boundary, where D ( x ) = 0, although their projections onto the plane R 2 are compact sets, as a rule, diffeomorphic to annuli in R 2 . We refer to such systems as billiards with semi-rigid walls.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266119050069</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2019-05, Vol.55 (5), p.644-657
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2238624701
source Springer Nature - Complete Springer Journals
subjects Asymptotic methods
Asymptotic properties
Billiards
Comparative analysis
Difference and Functional Equations
Differential equations
Eigenvectors
Hamiltonian functions
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Rigid walls
Toruses
Water waves
title Asymptotic Eigenfunctions of the Operator ∇D(x)∇ Defined in a Two-Dimensional Domain and Degenerating on Its Boundary and Billiards with Semi-Rigid Walls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Eigenfunctions%20of%20the%20Operator%20%E2%88%87D(x)%E2%88%87%20Defined%20in%20a%20Two-Dimensional%20Domain%20and%20Degenerating%20on%20Its%20Boundary%20and%20Billiards%20with%20Semi-Rigid%20Walls&rft.jtitle=Differential%20equations&rft.au=Anikin,%20A.%20Yu&rft.date=2019-05-01&rft.volume=55&rft.issue=5&rft.spage=644&rft.epage=657&rft.pages=644-657&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266119050069&rft_dat=%3Cgale_proqu%3EA722053084%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238624701&rft_id=info:pmid/&rft_galeid=A722053084&rfr_iscdi=true