Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system

A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO 4 ·5H 2 O, ZnSO 4 ·7H 2 O and Na 2 SnO 3 ·3H 2 O were the main salts. EDTA·2Na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied electrochemistry 2019-07, Vol.49 (7), p.715-729
Hauptverfasser: Ding, Lifeng, Chen, Chongyan, Dong, Yahui, Cheng, Jun, Niu, Yulan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 729
container_issue 7
container_start_page 715
container_title Journal of applied electrochemistry
container_volume 49
creator Ding, Lifeng
Chen, Chongyan
Dong, Yahui
Cheng, Jun
Niu, Yulan
description A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO 4 ·5H 2 O, ZnSO 4 ·7H 2 O and Na 2 SnO 3 ·3H 2 O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu 5 Zn 8 and Cu 10 Sn 3 phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition. Graphical Abstract
doi_str_mv 10.1007/s10800-019-01316-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2238624547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2238624547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f1089c5b329692b5d0414efc8112705d1a83d693ce61858da7af2fc27bd8ef3c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgejQ_85NZSvEPCi6sIG5Cmtxpp0yTmmQW40J8B9_QJzE6gjsX997Nd87lHIROKTmnhFQXgRJBSEZonYbTMnvdQxNaVCwTgot9NCGE0UzU9OkQHYWwIYTUrMwn6G2xBucHrKzBEfTaus6tBtw4j6EDHb3bdSq2doUV9i4AXrnOgMWz_vP949mm9WCx6jo34D6MmGmDM22_xRDXQwcWTKu2rYXkH71SGqKKgMMQImyP0UGjugAnv3eKHq-vFrPbbH5_cze7nGeaF2XMmhSv1sWSs7qs2bIwJKc5NFpQyipSGKoEN2XNNZRUFMKoSjWs0axaGgEN13yKzkbfnXcvPYQoN673Nr2UjHFRsrzIq0SxkdIpavDQyJ1vt8oPkhL53bMce5apZ_nTs3xNIj6KQoLtCvyf9T-qL477hYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238624547</pqid></control><display><type>article</type><title>Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system</title><source>SpringerNature Journals</source><creator>Ding, Lifeng ; Chen, Chongyan ; Dong, Yahui ; Cheng, Jun ; Niu, Yulan</creator><creatorcontrib>Ding, Lifeng ; Chen, Chongyan ; Dong, Yahui ; Cheng, Jun ; Niu, Yulan</creatorcontrib><description>A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO 4 ·5H 2 O, ZnSO 4 ·7H 2 O and Na 2 SnO 3 ·3H 2 O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu 5 Zn 8 and Cu 10 Sn 3 phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition. Graphical Abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-019-01316-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chelates ; Chemistry ; Chemistry and Materials Science ; Composition ; Copper ; Cyanides ; Electrochemical analysis ; Electrochemistry ; Electrodeposition ; Electroplating ; Ethylenediamine ; Ethylenediaminetetraacetic acids ; Industrial Chemistry/Chemical Engineering ; New technology ; NMR spectroscopy ; Physical Chemistry ; Research Article ; Sodium hydroxide ; Solid phases ; Ternary alloys ; Tin ; Tin base alloys</subject><ispartof>Journal of applied electrochemistry, 2019-07, Vol.49 (7), p.715-729</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-f1089c5b329692b5d0414efc8112705d1a83d693ce61858da7af2fc27bd8ef3c3</citedby><cites>FETCH-LOGICAL-c356t-f1089c5b329692b5d0414efc8112705d1a83d693ce61858da7af2fc27bd8ef3c3</cites><orcidid>0000-0002-4628-6695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-019-01316-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-019-01316-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ding, Lifeng</creatorcontrib><creatorcontrib>Chen, Chongyan</creatorcontrib><creatorcontrib>Dong, Yahui</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Niu, Yulan</creatorcontrib><title>Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO 4 ·5H 2 O, ZnSO 4 ·7H 2 O and Na 2 SnO 3 ·3H 2 O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu 5 Zn 8 and Cu 10 Sn 3 phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition. Graphical Abstract</description><subject>Chelates</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Copper</subject><subject>Cyanides</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Electroplating</subject><subject>Ethylenediamine</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>New technology</subject><subject>NMR spectroscopy</subject><subject>Physical Chemistry</subject><subject>Research Article</subject><subject>Sodium hydroxide</subject><subject>Solid phases</subject><subject>Ternary alloys</subject><subject>Tin</subject><subject>Tin base alloys</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgejQ_85NZSvEPCi6sIG5Cmtxpp0yTmmQW40J8B9_QJzE6gjsX997Nd87lHIROKTmnhFQXgRJBSEZonYbTMnvdQxNaVCwTgot9NCGE0UzU9OkQHYWwIYTUrMwn6G2xBucHrKzBEfTaus6tBtw4j6EDHb3bdSq2doUV9i4AXrnOgMWz_vP949mm9WCx6jo34D6MmGmDM22_xRDXQwcWTKu2rYXkH71SGqKKgMMQImyP0UGjugAnv3eKHq-vFrPbbH5_cze7nGeaF2XMmhSv1sWSs7qs2bIwJKc5NFpQyipSGKoEN2XNNZRUFMKoSjWs0axaGgEN13yKzkbfnXcvPYQoN673Nr2UjHFRsrzIq0SxkdIpavDQyJ1vt8oPkhL53bMce5apZ_nTs3xNIj6KQoLtCvyf9T-qL477hYQ</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Ding, Lifeng</creator><creator>Chen, Chongyan</creator><creator>Dong, Yahui</creator><creator>Cheng, Jun</creator><creator>Niu, Yulan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4628-6695</orcidid></search><sort><creationdate>20190715</creationdate><title>Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system</title><author>Ding, Lifeng ; Chen, Chongyan ; Dong, Yahui ; Cheng, Jun ; Niu, Yulan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f1089c5b329692b5d0414efc8112705d1a83d693ce61858da7af2fc27bd8ef3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chelates</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Copper</topic><topic>Cyanides</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Electroplating</topic><topic>Ethylenediamine</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>New technology</topic><topic>NMR spectroscopy</topic><topic>Physical Chemistry</topic><topic>Research Article</topic><topic>Sodium hydroxide</topic><topic>Solid phases</topic><topic>Ternary alloys</topic><topic>Tin</topic><topic>Tin base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Lifeng</creatorcontrib><creatorcontrib>Chen, Chongyan</creatorcontrib><creatorcontrib>Dong, Yahui</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Niu, Yulan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Lifeng</au><au>Chen, Chongyan</au><au>Dong, Yahui</au><au>Cheng, Jun</au><au>Niu, Yulan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>49</volume><issue>7</issue><spage>715</spage><epage>729</epage><pages>715-729</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO 4 ·5H 2 O, ZnSO 4 ·7H 2 O and Na 2 SnO 3 ·3H 2 O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu 5 Zn 8 and Cu 10 Sn 3 phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition. Graphical Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-019-01316-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4628-6695</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2019-07, Vol.49 (7), p.715-729
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_journals_2238624547
source SpringerNature Journals
subjects Chelates
Chemistry
Chemistry and Materials Science
Composition
Copper
Cyanides
Electrochemical analysis
Electrochemistry
Electrodeposition
Electroplating
Ethylenediamine
Ethylenediaminetetraacetic acids
Industrial Chemistry/Chemical Engineering
New technology
NMR spectroscopy
Physical Chemistry
Research Article
Sodium hydroxide
Solid phases
Ternary alloys
Tin
Tin base alloys
title Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20and%20technology%20for%20electroplating%20a%20rose%20golden%20Cu%E2%80%93Zn%E2%80%93Sn%20alloy%20using%20a%20disodium%20ethylenediamine%20tetraacetate%20system&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Ding,%20Lifeng&rft.date=2019-07-15&rft.volume=49&rft.issue=7&rft.spage=715&rft.epage=729&rft.pages=715-729&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-019-01316-z&rft_dat=%3Cproquest_cross%3E2238624547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238624547&rft_id=info:pmid/&rfr_iscdi=true