Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system
A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO 4 ·5H 2 O, ZnSO 4 ·7H 2 O and Na 2 SnO 3 ·3H 2 O were the main salts. EDTA·2Na...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2019-07, Vol.49 (7), p.715-729 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 729 |
---|---|
container_issue | 7 |
container_start_page | 715 |
container_title | Journal of applied electrochemistry |
container_volume | 49 |
creator | Ding, Lifeng Chen, Chongyan Dong, Yahui Cheng, Jun Niu, Yulan |
description | A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO
4
·5H
2
O, ZnSO
4
·7H
2
O and Na
2
SnO
3
·3H
2
O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu
5
Zn
8
and Cu
10
Sn
3
phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition.
Graphical Abstract |
doi_str_mv | 10.1007/s10800-019-01316-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2238624547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2238624547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f1089c5b329692b5d0414efc8112705d1a83d693ce61858da7af2fc27bd8ef3c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgejQ_85NZSvEPCi6sIG5Cmtxpp0yTmmQW40J8B9_QJzE6gjsX997Nd87lHIROKTmnhFQXgRJBSEZonYbTMnvdQxNaVCwTgot9NCGE0UzU9OkQHYWwIYTUrMwn6G2xBucHrKzBEfTaus6tBtw4j6EDHb3bdSq2doUV9i4AXrnOgMWz_vP949mm9WCx6jo34D6MmGmDM22_xRDXQwcWTKu2rYXkH71SGqKKgMMQImyP0UGjugAnv3eKHq-vFrPbbH5_cze7nGeaF2XMmhSv1sWSs7qs2bIwJKc5NFpQyipSGKoEN2XNNZRUFMKoSjWs0axaGgEN13yKzkbfnXcvPYQoN673Nr2UjHFRsrzIq0SxkdIpavDQyJ1vt8oPkhL53bMce5apZ_nTs3xNIj6KQoLtCvyf9T-qL477hYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238624547</pqid></control><display><type>article</type><title>Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system</title><source>SpringerNature Journals</source><creator>Ding, Lifeng ; Chen, Chongyan ; Dong, Yahui ; Cheng, Jun ; Niu, Yulan</creator><creatorcontrib>Ding, Lifeng ; Chen, Chongyan ; Dong, Yahui ; Cheng, Jun ; Niu, Yulan</creatorcontrib><description>A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO
4
·5H
2
O, ZnSO
4
·7H
2
O and Na
2
SnO
3
·3H
2
O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu
5
Zn
8
and Cu
10
Sn
3
phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition.
Graphical Abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-019-01316-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chelates ; Chemistry ; Chemistry and Materials Science ; Composition ; Copper ; Cyanides ; Electrochemical analysis ; Electrochemistry ; Electrodeposition ; Electroplating ; Ethylenediamine ; Ethylenediaminetetraacetic acids ; Industrial Chemistry/Chemical Engineering ; New technology ; NMR spectroscopy ; Physical Chemistry ; Research Article ; Sodium hydroxide ; Solid phases ; Ternary alloys ; Tin ; Tin base alloys</subject><ispartof>Journal of applied electrochemistry, 2019-07, Vol.49 (7), p.715-729</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-f1089c5b329692b5d0414efc8112705d1a83d693ce61858da7af2fc27bd8ef3c3</citedby><cites>FETCH-LOGICAL-c356t-f1089c5b329692b5d0414efc8112705d1a83d693ce61858da7af2fc27bd8ef3c3</cites><orcidid>0000-0002-4628-6695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-019-01316-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-019-01316-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ding, Lifeng</creatorcontrib><creatorcontrib>Chen, Chongyan</creatorcontrib><creatorcontrib>Dong, Yahui</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Niu, Yulan</creatorcontrib><title>Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO
4
·5H
2
O, ZnSO
4
·7H
2
O and Na
2
SnO
3
·3H
2
O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu
5
Zn
8
and Cu
10
Sn
3
phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition.
Graphical Abstract</description><subject>Chelates</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composition</subject><subject>Copper</subject><subject>Cyanides</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Electroplating</subject><subject>Ethylenediamine</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>New technology</subject><subject>NMR spectroscopy</subject><subject>Physical Chemistry</subject><subject>Research Article</subject><subject>Sodium hydroxide</subject><subject>Solid phases</subject><subject>Ternary alloys</subject><subject>Tin</subject><subject>Tin base alloys</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgejQ_85NZSvEPCi6sIG5Cmtxpp0yTmmQW40J8B9_QJzE6gjsX997Nd87lHIROKTmnhFQXgRJBSEZonYbTMnvdQxNaVCwTgot9NCGE0UzU9OkQHYWwIYTUrMwn6G2xBucHrKzBEfTaus6tBtw4j6EDHb3bdSq2doUV9i4AXrnOgMWz_vP949mm9WCx6jo34D6MmGmDM22_xRDXQwcWTKu2rYXkH71SGqKKgMMQImyP0UGjugAnv3eKHq-vFrPbbH5_cze7nGeaF2XMmhSv1sWSs7qs2bIwJKc5NFpQyipSGKoEN2XNNZRUFMKoSjWs0axaGgEN13yKzkbfnXcvPYQoN673Nr2UjHFRsrzIq0SxkdIpavDQyJ1vt8oPkhL53bMce5apZ_nTs3xNIj6KQoLtCvyf9T-qL477hYQ</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Ding, Lifeng</creator><creator>Chen, Chongyan</creator><creator>Dong, Yahui</creator><creator>Cheng, Jun</creator><creator>Niu, Yulan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4628-6695</orcidid></search><sort><creationdate>20190715</creationdate><title>Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system</title><author>Ding, Lifeng ; Chen, Chongyan ; Dong, Yahui ; Cheng, Jun ; Niu, Yulan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f1089c5b329692b5d0414efc8112705d1a83d693ce61858da7af2fc27bd8ef3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chelates</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composition</topic><topic>Copper</topic><topic>Cyanides</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Electroplating</topic><topic>Ethylenediamine</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>New technology</topic><topic>NMR spectroscopy</topic><topic>Physical Chemistry</topic><topic>Research Article</topic><topic>Sodium hydroxide</topic><topic>Solid phases</topic><topic>Ternary alloys</topic><topic>Tin</topic><topic>Tin base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Lifeng</creatorcontrib><creatorcontrib>Chen, Chongyan</creatorcontrib><creatorcontrib>Dong, Yahui</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><creatorcontrib>Niu, Yulan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Lifeng</au><au>Chen, Chongyan</au><au>Dong, Yahui</au><au>Cheng, Jun</au><au>Niu, Yulan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>49</volume><issue>7</issue><spage>715</spage><epage>729</epage><pages>715-729</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO
4
·5H
2
O, ZnSO
4
·7H
2
O and Na
2
SnO
3
·3H
2
O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu
5
Zn
8
and Cu
10
Sn
3
phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition.
Graphical Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-019-01316-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4628-6695</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2019-07, Vol.49 (7), p.715-729 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_2238624547 |
source | SpringerNature Journals |
subjects | Chelates Chemistry Chemistry and Materials Science Composition Copper Cyanides Electrochemical analysis Electrochemistry Electrodeposition Electroplating Ethylenediamine Ethylenediaminetetraacetic acids Industrial Chemistry/Chemical Engineering New technology NMR spectroscopy Physical Chemistry Research Article Sodium hydroxide Solid phases Ternary alloys Tin Tin base alloys |
title | Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20and%20technology%20for%20electroplating%20a%20rose%20golden%20Cu%E2%80%93Zn%E2%80%93Sn%20alloy%20using%20a%20disodium%20ethylenediamine%20tetraacetate%20system&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Ding,%20Lifeng&rft.date=2019-07-15&rft.volume=49&rft.issue=7&rft.spage=715&rft.epage=729&rft.pages=715-729&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-019-01316-z&rft_dat=%3Cproquest_cross%3E2238624547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238624547&rft_id=info:pmid/&rfr_iscdi=true |