Decentralized finite-horizon suboptimal control for nonlinear interconnected dynamic systems using SDRE approach

This paper introduces a new approach to ensure the decentralized horizon suboptimal control of interconnected nonlinear systems based on the decentralized finite-state-dependent Riccati equation. This approach is, in fact, a new extension of the state-dependent Riccati equation technique with a fini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2019-07, Vol.41 (11), p.3264-3275
Hauptverfasser: Feydi, Ahmed, Elloumi, Salwa, Jammazi, Chaker, Benhadj Braiek, Naceur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3275
container_issue 11
container_start_page 3264
container_title Transactions of the Institute of Measurement and Control
container_volume 41
creator Feydi, Ahmed
Elloumi, Salwa
Jammazi, Chaker
Benhadj Braiek, Naceur
description This paper introduces a new approach to ensure the decentralized horizon suboptimal control of interconnected nonlinear systems based on the decentralized finite-state-dependent Riccati equation. This approach is, in fact, a new extension of the state-dependent Riccati equation technique with a finite horizon for the case of large-scale nonlinear systems, which are characterized by the interconnection of n subsystems. The main finding in this work is the use of the Lyapunov direct method of stability analysis, associated with a quadratic function, in order to determine a new sufficient condition to guarantee the global asymptotic stability of the studied systems. We conducted advanced simulations of this new control method on three interconnected inverted pendulums. Our results demonstrate its efficiency and the sufficiency of the new stability conditions.
doi_str_mv 10.1177/0142331218820916
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2238524902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331218820916</sage_id><sourcerecordid>2238524902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-cf35d415874c56d5a1b036afdbbcf266457859018371fa25e205a94a9f5617f03</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKt3jwHPq_nc7B6lrVUoCH6cl2w2aVO2yZpkD-2vN6WCIHh6D_PMDO8AcIvRPcZCPCDMCKWY4KoiqMblGZhgJkSBaFmfg8lRLo76JbiKcYsQYqxkEzDMtdIuBdnbg-6gsc4mXWx8sAfvYBxbPyS7kz1UPlO-h8YH6LzrrdMyQOuSDllyWqVs7_ZO7qyCcR-T3kU4RuvW8H3-toByGIKXanMNLozso775uVPw-bT4mD0Xq9fly-xxVSiK6lQoQ3nHMK8EU7zsuMRt_kSarm2VIWXJuKh4jXBFBTaScE0QlzWTteElFgbRKbg75ebar1HH1Gz9GFyubAihFSesRiRT6ESp4GMM2jRDyO-GfYNRc9y1-btrthQnS5Rr_Rv6L_8N7EB44Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238524902</pqid></control><display><type>article</type><title>Decentralized finite-horizon suboptimal control for nonlinear interconnected dynamic systems using SDRE approach</title><source>SAGE Complete A-Z List</source><creator>Feydi, Ahmed ; Elloumi, Salwa ; Jammazi, Chaker ; Benhadj Braiek, Naceur</creator><creatorcontrib>Feydi, Ahmed ; Elloumi, Salwa ; Jammazi, Chaker ; Benhadj Braiek, Naceur</creatorcontrib><description>This paper introduces a new approach to ensure the decentralized horizon suboptimal control of interconnected nonlinear systems based on the decentralized finite-state-dependent Riccati equation. This approach is, in fact, a new extension of the state-dependent Riccati equation technique with a finite horizon for the case of large-scale nonlinear systems, which are characterized by the interconnection of n subsystems. The main finding in this work is the use of the Lyapunov direct method of stability analysis, associated with a quadratic function, in order to determine a new sufficient condition to guarantee the global asymptotic stability of the studied systems. We conducted advanced simulations of this new control method on three interconnected inverted pendulums. Our results demonstrate its efficiency and the sufficiency of the new stability conditions.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331218820916</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Control systems ; Liapunov direct method ; Nonlinear control ; Nonlinear systems ; Pendulums ; Quadratic equations ; Riccati equation ; Stability analysis ; Subsystems</subject><ispartof>Transactions of the Institute of Measurement and Control, 2019-07, Vol.41 (11), p.3264-3275</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-cf35d415874c56d5a1b036afdbbcf266457859018371fa25e205a94a9f5617f03</citedby><cites>FETCH-LOGICAL-c309t-cf35d415874c56d5a1b036afdbbcf266457859018371fa25e205a94a9f5617f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331218820916$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331218820916$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Feydi, Ahmed</creatorcontrib><creatorcontrib>Elloumi, Salwa</creatorcontrib><creatorcontrib>Jammazi, Chaker</creatorcontrib><creatorcontrib>Benhadj Braiek, Naceur</creatorcontrib><title>Decentralized finite-horizon suboptimal control for nonlinear interconnected dynamic systems using SDRE approach</title><title>Transactions of the Institute of Measurement and Control</title><description>This paper introduces a new approach to ensure the decentralized horizon suboptimal control of interconnected nonlinear systems based on the decentralized finite-state-dependent Riccati equation. This approach is, in fact, a new extension of the state-dependent Riccati equation technique with a finite horizon for the case of large-scale nonlinear systems, which are characterized by the interconnection of n subsystems. The main finding in this work is the use of the Lyapunov direct method of stability analysis, associated with a quadratic function, in order to determine a new sufficient condition to guarantee the global asymptotic stability of the studied systems. We conducted advanced simulations of this new control method on three interconnected inverted pendulums. Our results demonstrate its efficiency and the sufficiency of the new stability conditions.</description><subject>Control systems</subject><subject>Liapunov direct method</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Pendulums</subject><subject>Quadratic equations</subject><subject>Riccati equation</subject><subject>Stability analysis</subject><subject>Subsystems</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEYhIMoWKt3jwHPq_nc7B6lrVUoCH6cl2w2aVO2yZpkD-2vN6WCIHh6D_PMDO8AcIvRPcZCPCDMCKWY4KoiqMblGZhgJkSBaFmfg8lRLo76JbiKcYsQYqxkEzDMtdIuBdnbg-6gsc4mXWx8sAfvYBxbPyS7kz1UPlO-h8YH6LzrrdMyQOuSDllyWqVs7_ZO7qyCcR-T3kU4RuvW8H3-toByGIKXanMNLozso775uVPw-bT4mD0Xq9fly-xxVSiK6lQoQ3nHMK8EU7zsuMRt_kSarm2VIWXJuKh4jXBFBTaScE0QlzWTteElFgbRKbg75ebar1HH1Gz9GFyubAihFSesRiRT6ESp4GMM2jRDyO-GfYNRc9y1-btrthQnS5Rr_Rv6L_8N7EB44Q</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Feydi, Ahmed</creator><creator>Elloumi, Salwa</creator><creator>Jammazi, Chaker</creator><creator>Benhadj Braiek, Naceur</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201907</creationdate><title>Decentralized finite-horizon suboptimal control for nonlinear interconnected dynamic systems using SDRE approach</title><author>Feydi, Ahmed ; Elloumi, Salwa ; Jammazi, Chaker ; Benhadj Braiek, Naceur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-cf35d415874c56d5a1b036afdbbcf266457859018371fa25e205a94a9f5617f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Control systems</topic><topic>Liapunov direct method</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Pendulums</topic><topic>Quadratic equations</topic><topic>Riccati equation</topic><topic>Stability analysis</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feydi, Ahmed</creatorcontrib><creatorcontrib>Elloumi, Salwa</creatorcontrib><creatorcontrib>Jammazi, Chaker</creatorcontrib><creatorcontrib>Benhadj Braiek, Naceur</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feydi, Ahmed</au><au>Elloumi, Salwa</au><au>Jammazi, Chaker</au><au>Benhadj Braiek, Naceur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized finite-horizon suboptimal control for nonlinear interconnected dynamic systems using SDRE approach</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2019-07</date><risdate>2019</risdate><volume>41</volume><issue>11</issue><spage>3264</spage><epage>3275</epage><pages>3264-3275</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>This paper introduces a new approach to ensure the decentralized horizon suboptimal control of interconnected nonlinear systems based on the decentralized finite-state-dependent Riccati equation. This approach is, in fact, a new extension of the state-dependent Riccati equation technique with a finite horizon for the case of large-scale nonlinear systems, which are characterized by the interconnection of n subsystems. The main finding in this work is the use of the Lyapunov direct method of stability analysis, associated with a quadratic function, in order to determine a new sufficient condition to guarantee the global asymptotic stability of the studied systems. We conducted advanced simulations of this new control method on three interconnected inverted pendulums. Our results demonstrate its efficiency and the sufficiency of the new stability conditions.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331218820916</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2019-07, Vol.41 (11), p.3264-3275
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2238524902
source SAGE Complete A-Z List
subjects Control systems
Liapunov direct method
Nonlinear control
Nonlinear systems
Pendulums
Quadratic equations
Riccati equation
Stability analysis
Subsystems
title Decentralized finite-horizon suboptimal control for nonlinear interconnected dynamic systems using SDRE approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A35%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20finite-horizon%20suboptimal%20control%20for%20nonlinear%20interconnected%20dynamic%20systems%20using%20SDRE%20approach&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Feydi,%20Ahmed&rft.date=2019-07&rft.volume=41&rft.issue=11&rft.spage=3264&rft.epage=3275&rft.pages=3264-3275&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331218820916&rft_dat=%3Cproquest_cross%3E2238524902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238524902&rft_id=info:pmid/&rft_sage_id=10.1177_0142331218820916&rfr_iscdi=true