A Room‐Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries

Aqueous Zn‐based batteries are attracting extensive interest because of their economic feasibility and potentially high energy density. However, poor rechargeability of Zn anode in conventional electrolytes resulting from dendrite formation and self‐corrosion hinders their practical implementation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-06, Vol.9 (22), p.n/a
Hauptverfasser: Chen, Chih‐Yao, Matsumoto, Kazuhiko, Kubota, Keigo, Hagiwara, Rika, Xu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page
container_title Advanced energy materials
container_volume 9
creator Chen, Chih‐Yao
Matsumoto, Kazuhiko
Kubota, Keigo
Hagiwara, Rika
Xu, Qiang
description Aqueous Zn‐based batteries are attracting extensive interest because of their economic feasibility and potentially high energy density. However, poor rechargeability of Zn anode in conventional electrolytes resulting from dendrite formation and self‐corrosion hinders their practical implementation. Herein, a Zn molten hydrate composed of inorganic Zn salt and water is demonstrated as an advantageous electrolyte for solving these issues. In this electrolyte, dendrite‐free Zn deposition/dissolution reaction with a high Coulombic efficiency (≈99%) as well as long‐term stability, free from CO2 poisoning are realized. The resultant Zn–air cell exhibits a reversible capacity of 1000 mAh g(catalyst)−1 over 100 cycles at 30 °C. Combined with the intrinsic safety associated with aqueous chemistry and cost benefit of the raw material, the present Zn–air battery makes a strong candidate for large‐scale energy storage. Zinc molten hydrate electrolyte is demonstrated to be an advantageous electrolyte for Zn‐based battery applications. The high Zn concentration and reduced water activity not only promote dendrite‐free Zn plating/stripping at a high Coulombic efficiency but also effectively suppress self‐corrosion of Zn, enabling Zn–air batteries a long‐term cyclability.
doi_str_mv 10.1002/aenm.201900196
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2238497901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2238497901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5066-ec909fbdbb09c5ece14eb9e34f379d07cf38236bc859204b90376a325469d0b83</originalsourceid><addsrcrecordid>eNqFUE1Lw0AQXUTBor16DnhO3a9sssdYqhVahdJevCy724mmJNm6SZHe-hME_2F_iVsq9ejAMI-Z997AQ-iG4AHBmN5paOoBxUTi0OIM9YggPBYZx-cnzOgl6rftCofikmDGemiRRzPn6v3uaw71GrzuNh6iqas6aKLxdhkWEI0qsJ131TbgwvloBvZd-zfQpoLotWzsfvedlz66110HvoT2Gl0Uumqh_zuv0OJhNB-O48nL49Mwn8Q2wULEYCWWhVkag6VNwALhYCQwXrBULnFqC5ZRJozNEkkxNxKzVGhGEy7C2WTsCt0efdfefWyg7dTKbXwTXipKWcZlKjEJrMGRZb1rWw-FWvuy1n6rCFaH9NQhPXVKLwjkUfBZVrD9h63y0fP0T_sDFeJ1CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238497901</pqid></control><display><type>article</type><title>A Room‐Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Chih‐Yao ; Matsumoto, Kazuhiko ; Kubota, Keigo ; Hagiwara, Rika ; Xu, Qiang</creator><creatorcontrib>Chen, Chih‐Yao ; Matsumoto, Kazuhiko ; Kubota, Keigo ; Hagiwara, Rika ; Xu, Qiang</creatorcontrib><description>Aqueous Zn‐based batteries are attracting extensive interest because of their economic feasibility and potentially high energy density. However, poor rechargeability of Zn anode in conventional electrolytes resulting from dendrite formation and self‐corrosion hinders their practical implementation. Herein, a Zn molten hydrate composed of inorganic Zn salt and water is demonstrated as an advantageous electrolyte for solving these issues. In this electrolyte, dendrite‐free Zn deposition/dissolution reaction with a high Coulombic efficiency (≈99%) as well as long‐term stability, free from CO2 poisoning are realized. The resultant Zn–air cell exhibits a reversible capacity of 1000 mAh g(catalyst)−1 over 100 cycles at 30 °C. Combined with the intrinsic safety associated with aqueous chemistry and cost benefit of the raw material, the present Zn–air battery makes a strong candidate for large‐scale energy storage. Zinc molten hydrate electrolyte is demonstrated to be an advantageous electrolyte for Zn‐based battery applications. The high Zn concentration and reduced water activity not only promote dendrite‐free Zn plating/stripping at a high Coulombic efficiency but also effectively suppress self‐corrosion of Zn, enabling Zn–air batteries a long‐term cyclability.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201900196</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>aqueous batteries ; Dendritic structure ; Electrolytes ; Energy storage ; Flux density ; ionic liquids ; Metal air batteries ; molten hydrates ; Organic chemistry ; Rechargeable batteries ; Room temperature ; zinc anodes ; Zinc salts ; Zinc-oxygen batteries ; zinc–air batteries</subject><ispartof>Advanced energy materials, 2019-06, Vol.9 (22), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5066-ec909fbdbb09c5ece14eb9e34f379d07cf38236bc859204b90376a325469d0b83</citedby><cites>FETCH-LOGICAL-c5066-ec909fbdbb09c5ece14eb9e34f379d07cf38236bc859204b90376a325469d0b83</cites><orcidid>0000-0001-5385-9650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201900196$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201900196$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Chih‐Yao</creatorcontrib><creatorcontrib>Matsumoto, Kazuhiko</creatorcontrib><creatorcontrib>Kubota, Keigo</creatorcontrib><creatorcontrib>Hagiwara, Rika</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><title>A Room‐Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries</title><title>Advanced energy materials</title><description>Aqueous Zn‐based batteries are attracting extensive interest because of their economic feasibility and potentially high energy density. However, poor rechargeability of Zn anode in conventional electrolytes resulting from dendrite formation and self‐corrosion hinders their practical implementation. Herein, a Zn molten hydrate composed of inorganic Zn salt and water is demonstrated as an advantageous electrolyte for solving these issues. In this electrolyte, dendrite‐free Zn deposition/dissolution reaction with a high Coulombic efficiency (≈99%) as well as long‐term stability, free from CO2 poisoning are realized. The resultant Zn–air cell exhibits a reversible capacity of 1000 mAh g(catalyst)−1 over 100 cycles at 30 °C. Combined with the intrinsic safety associated with aqueous chemistry and cost benefit of the raw material, the present Zn–air battery makes a strong candidate for large‐scale energy storage. Zinc molten hydrate electrolyte is demonstrated to be an advantageous electrolyte for Zn‐based battery applications. The high Zn concentration and reduced water activity not only promote dendrite‐free Zn plating/stripping at a high Coulombic efficiency but also effectively suppress self‐corrosion of Zn, enabling Zn–air batteries a long‐term cyclability.</description><subject>aqueous batteries</subject><subject>Dendritic structure</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>ionic liquids</subject><subject>Metal air batteries</subject><subject>molten hydrates</subject><subject>Organic chemistry</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>zinc anodes</subject><subject>Zinc salts</subject><subject>Zinc-oxygen batteries</subject><subject>zinc–air batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1Lw0AQXUTBor16DnhO3a9sssdYqhVahdJevCy724mmJNm6SZHe-hME_2F_iVsq9ejAMI-Z997AQ-iG4AHBmN5paOoBxUTi0OIM9YggPBYZx-cnzOgl6rftCofikmDGemiRRzPn6v3uaw71GrzuNh6iqas6aKLxdhkWEI0qsJ131TbgwvloBvZd-zfQpoLotWzsfvedlz66110HvoT2Gl0Uumqh_zuv0OJhNB-O48nL49Mwn8Q2wULEYCWWhVkag6VNwALhYCQwXrBULnFqC5ZRJozNEkkxNxKzVGhGEy7C2WTsCt0efdfefWyg7dTKbXwTXipKWcZlKjEJrMGRZb1rWw-FWvuy1n6rCFaH9NQhPXVKLwjkUfBZVrD9h63y0fP0T_sDFeJ1CQ</recordid><startdate>20190612</startdate><enddate>20190612</enddate><creator>Chen, Chih‐Yao</creator><creator>Matsumoto, Kazuhiko</creator><creator>Kubota, Keigo</creator><creator>Hagiwara, Rika</creator><creator>Xu, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5385-9650</orcidid></search><sort><creationdate>20190612</creationdate><title>A Room‐Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries</title><author>Chen, Chih‐Yao ; Matsumoto, Kazuhiko ; Kubota, Keigo ; Hagiwara, Rika ; Xu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5066-ec909fbdbb09c5ece14eb9e34f379d07cf38236bc859204b90376a325469d0b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>aqueous batteries</topic><topic>Dendritic structure</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>ionic liquids</topic><topic>Metal air batteries</topic><topic>molten hydrates</topic><topic>Organic chemistry</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>zinc anodes</topic><topic>Zinc salts</topic><topic>Zinc-oxygen batteries</topic><topic>zinc–air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chih‐Yao</creatorcontrib><creatorcontrib>Matsumoto, Kazuhiko</creatorcontrib><creatorcontrib>Kubota, Keigo</creatorcontrib><creatorcontrib>Hagiwara, Rika</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chih‐Yao</au><au>Matsumoto, Kazuhiko</au><au>Kubota, Keigo</au><au>Hagiwara, Rika</au><au>Xu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Room‐Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2019-06-12</date><risdate>2019</risdate><volume>9</volume><issue>22</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Aqueous Zn‐based batteries are attracting extensive interest because of their economic feasibility and potentially high energy density. However, poor rechargeability of Zn anode in conventional electrolytes resulting from dendrite formation and self‐corrosion hinders their practical implementation. Herein, a Zn molten hydrate composed of inorganic Zn salt and water is demonstrated as an advantageous electrolyte for solving these issues. In this electrolyte, dendrite‐free Zn deposition/dissolution reaction with a high Coulombic efficiency (≈99%) as well as long‐term stability, free from CO2 poisoning are realized. The resultant Zn–air cell exhibits a reversible capacity of 1000 mAh g(catalyst)−1 over 100 cycles at 30 °C. Combined with the intrinsic safety associated with aqueous chemistry and cost benefit of the raw material, the present Zn–air battery makes a strong candidate for large‐scale energy storage. Zinc molten hydrate electrolyte is demonstrated to be an advantageous electrolyte for Zn‐based battery applications. The high Zn concentration and reduced water activity not only promote dendrite‐free Zn plating/stripping at a high Coulombic efficiency but also effectively suppress self‐corrosion of Zn, enabling Zn–air batteries a long‐term cyclability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201900196</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5385-9650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-06, Vol.9 (22), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2238497901
source Wiley Online Library Journals Frontfile Complete
subjects aqueous batteries
Dendritic structure
Electrolytes
Energy storage
Flux density
ionic liquids
Metal air batteries
molten hydrates
Organic chemistry
Rechargeable batteries
Room temperature
zinc anodes
Zinc salts
Zinc-oxygen batteries
zinc–air batteries
title A Room‐Temperature Molten Hydrate Electrolyte for Rechargeable Zinc–Air Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Room%E2%80%90Temperature%20Molten%20Hydrate%20Electrolyte%20for%20Rechargeable%20Zinc%E2%80%93Air%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Chen,%20Chih%E2%80%90Yao&rft.date=2019-06-12&rft.volume=9&rft.issue=22&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201900196&rft_dat=%3Cproquest_cross%3E2238497901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238497901&rft_id=info:pmid/&rfr_iscdi=true