Box–Cox elliptical distributions with application
We propose and study the class of Box–Cox elliptical distributions. It provides alternative distributions for modeling multivariate positive, marginally skewed and possibly heavy-tailed data. This new class of distributions has as a special case the class of log-elliptical distributions, and reduces...
Gespeichert in:
Veröffentlicht in: | Metrika 2019-07, Vol.82 (5), p.547-571 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 5 |
container_start_page | 547 |
container_title | Metrika |
container_volume | 82 |
creator | Morán-Vásquez, Raúl Alejandro Ferrari, Silvia L. P. |
description | We propose and study the class of Box–Cox elliptical distributions. It provides alternative distributions for modeling multivariate positive, marginally skewed and possibly heavy-tailed data. This new class of distributions has as a special case the class of log-elliptical distributions, and reduces to the Box–Cox symmetric class of distributions in the univariate setting. The parameters are interpretable in terms of quantiles and relative dispersions of the marginal distributions and of associations between pairs of variables. The relation between the scale parameters and quantiles makes the Box–Cox elliptical distributions attractive for regression modeling purposes. Applications to data on vitamin intake are presented and discussed. |
doi_str_mv | 10.1007/s00184-018-0682-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2238020850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2238020850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3c1c2463a02db69d3de3910012df6980284f7f6b5c6c85f2c0e8d7fa39ab86e13</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeC5-hk0qbpURddhQUvCt5CmiaapW5r0sV1T76Db-iTmKWCJy8zMPP9_ww_IacMzhlAeREBmMxpKhSERLrdIxOW84JWKJ72yQQABWWcF4fkKMZlokuBOCH8qtt8f37Nuk1m29b3gze6zRofh-Dr9eC7Vcze_fCS6b5v0243OSYHTrfRnvz2KXm8uX6Y3dLF_fxudrmghufVQLlhBnPBNWBTi6rhjeVVepZh40QlAWXuSifqwggjC4cGrGxKp3mlayks41NyNvr2oXtb2zioZbcOq3RSIfJkALKARLGRMqGLMVin-uBfdfhQDNQuGzVmo1JRu2zUNmlw1MTErp5t-HP-X_QDb85n6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238020850</pqid></control><display><type>article</type><title>Box–Cox elliptical distributions with application</title><source>SpringerLink Journals - AutoHoldings</source><creator>Morán-Vásquez, Raúl Alejandro ; Ferrari, Silvia L. P.</creator><creatorcontrib>Morán-Vásquez, Raúl Alejandro ; Ferrari, Silvia L. P.</creatorcontrib><description>We propose and study the class of Box–Cox elliptical distributions. It provides alternative distributions for modeling multivariate positive, marginally skewed and possibly heavy-tailed data. This new class of distributions has as a special case the class of log-elliptical distributions, and reduces to the Box–Cox symmetric class of distributions in the univariate setting. The parameters are interpretable in terms of quantiles and relative dispersions of the marginal distributions and of associations between pairs of variables. The relation between the scale parameters and quantiles makes the Box–Cox elliptical distributions attractive for regression modeling purposes. Applications to data on vitamin intake are presented and discussed.</description><identifier>ISSN: 0026-1335</identifier><identifier>EISSN: 1435-926X</identifier><identifier>DOI: 10.1007/s00184-018-0682-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematical models ; Mathematics and Statistics ; Modelling ; Mutual funds ; Normal distribution ; Parameters ; Probability Theory and Stochastic Processes ; Quantiles ; Statistics</subject><ispartof>Metrika, 2019-07, Vol.82 (5), p.547-571</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3c1c2463a02db69d3de3910012df6980284f7f6b5c6c85f2c0e8d7fa39ab86e13</citedby><cites>FETCH-LOGICAL-c349t-3c1c2463a02db69d3de3910012df6980284f7f6b5c6c85f2c0e8d7fa39ab86e13</cites><orcidid>0000-0001-5203-0875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00184-018-0682-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00184-018-0682-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Morán-Vásquez, Raúl Alejandro</creatorcontrib><creatorcontrib>Ferrari, Silvia L. P.</creatorcontrib><title>Box–Cox elliptical distributions with application</title><title>Metrika</title><addtitle>Metrika</addtitle><description>We propose and study the class of Box–Cox elliptical distributions. It provides alternative distributions for modeling multivariate positive, marginally skewed and possibly heavy-tailed data. This new class of distributions has as a special case the class of log-elliptical distributions, and reduces to the Box–Cox symmetric class of distributions in the univariate setting. The parameters are interpretable in terms of quantiles and relative dispersions of the marginal distributions and of associations between pairs of variables. The relation between the scale parameters and quantiles makes the Box–Cox elliptical distributions attractive for regression modeling purposes. Applications to data on vitamin intake are presented and discussed.</description><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Modelling</subject><subject>Mutual funds</subject><subject>Normal distribution</subject><subject>Parameters</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantiles</subject><subject>Statistics</subject><issn>0026-1335</issn><issn>1435-926X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK4-gLeC5-hk0qbpURddhQUvCt5CmiaapW5r0sV1T76Db-iTmKWCJy8zMPP9_ww_IacMzhlAeREBmMxpKhSERLrdIxOW84JWKJ72yQQABWWcF4fkKMZlokuBOCH8qtt8f37Nuk1m29b3gze6zRofh-Dr9eC7Vcze_fCS6b5v0243OSYHTrfRnvz2KXm8uX6Y3dLF_fxudrmghufVQLlhBnPBNWBTi6rhjeVVepZh40QlAWXuSifqwggjC4cGrGxKp3mlayks41NyNvr2oXtb2zioZbcOq3RSIfJkALKARLGRMqGLMVin-uBfdfhQDNQuGzVmo1JRu2zUNmlw1MTErp5t-HP-X_QDb85n6A</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Morán-Vásquez, Raúl Alejandro</creator><creator>Ferrari, Silvia L. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5203-0875</orcidid></search><sort><creationdate>20190701</creationdate><title>Box–Cox elliptical distributions with application</title><author>Morán-Vásquez, Raúl Alejandro ; Ferrari, Silvia L. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3c1c2463a02db69d3de3910012df6980284f7f6b5c6c85f2c0e8d7fa39ab86e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Modelling</topic><topic>Mutual funds</topic><topic>Normal distribution</topic><topic>Parameters</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantiles</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morán-Vásquez, Raúl Alejandro</creatorcontrib><creatorcontrib>Ferrari, Silvia L. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Metrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morán-Vásquez, Raúl Alejandro</au><au>Ferrari, Silvia L. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Box–Cox elliptical distributions with application</atitle><jtitle>Metrika</jtitle><stitle>Metrika</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>82</volume><issue>5</issue><spage>547</spage><epage>571</epage><pages>547-571</pages><issn>0026-1335</issn><eissn>1435-926X</eissn><abstract>We propose and study the class of Box–Cox elliptical distributions. It provides alternative distributions for modeling multivariate positive, marginally skewed and possibly heavy-tailed data. This new class of distributions has as a special case the class of log-elliptical distributions, and reduces to the Box–Cox symmetric class of distributions in the univariate setting. The parameters are interpretable in terms of quantiles and relative dispersions of the marginal distributions and of associations between pairs of variables. The relation between the scale parameters and quantiles makes the Box–Cox elliptical distributions attractive for regression modeling purposes. Applications to data on vitamin intake are presented and discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00184-018-0682-z</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-5203-0875</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-1335 |
ispartof | Metrika, 2019-07, Vol.82 (5), p.547-571 |
issn | 0026-1335 1435-926X |
language | eng |
recordid | cdi_proquest_journals_2238020850 |
source | SpringerLink Journals - AutoHoldings |
subjects | Economic Theory/Quantitative Economics/Mathematical Methods Mathematical models Mathematics and Statistics Modelling Mutual funds Normal distribution Parameters Probability Theory and Stochastic Processes Quantiles Statistics |
title | Box–Cox elliptical distributions with application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Box%E2%80%93Cox%20elliptical%20distributions%20with%20application&rft.jtitle=Metrika&rft.au=Mor%C3%A1n-V%C3%A1squez,%20Ra%C3%BAl%20Alejandro&rft.date=2019-07-01&rft.volume=82&rft.issue=5&rft.spage=547&rft.epage=571&rft.pages=547-571&rft.issn=0026-1335&rft.eissn=1435-926X&rft_id=info:doi/10.1007/s00184-018-0682-z&rft_dat=%3Cproquest_cross%3E2238020850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238020850&rft_id=info:pmid/&rfr_iscdi=true |