Selective edge etching to improve the rate capability of Prussian blue analogues for sodium ion batteries

Prussian blue analogues (PBA) possess a high theoretical specific capacity for sodium ion batteries. However, cycling PBA to a high current density causes severe capacity fading. Here, we develop a selective edge-etching approach to tackle this long-standing issue of poor rate capability. Well-cryst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry frontiers 2019-06, Vol.6 (6), p.1361-1366
Hauptverfasser: Zhu, Youhuan, Wang, Bingxue, Gan, Qingmeng, Wang, Yanfang, Wang, Zhengyu, Xie, Jiwei, Gu, Shuai, Li, Zhiqiang, Li, Yingzhi, Ji, Zong-Wei, Cheng, Hua, Lu, Zhouguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1366
container_issue 6
container_start_page 1361
container_title Inorganic chemistry frontiers
container_volume 6
creator Zhu, Youhuan
Wang, Bingxue
Gan, Qingmeng
Wang, Yanfang
Wang, Zhengyu
Xie, Jiwei
Gu, Shuai
Li, Zhiqiang
Li, Yingzhi
Ji, Zong-Wei
Cheng, Hua
Lu, Zhouguang
description Prussian blue analogues (PBA) possess a high theoretical specific capacity for sodium ion batteries. However, cycling PBA to a high current density causes severe capacity fading. Here, we develop a selective edge-etching approach to tackle this long-standing issue of poor rate capability. Well-crystallized PBA particles were produced by hydrothermal treatment of a sodium hexacyanoferrate precursor dissolved in muriatic acid solution, which were then eroded in hydrochloric acid solution to promote selective etching along the edges of the PBA crystals. The defect concentration ([Fe(CN) 6 ] 4− ) on the edge is denser than that at the face or corner, which stimulates the preferred etching of edges via the defect-induced heterogeneous mechanism. Due to the increasing exposed surface area and active sites, the etched PBA display much improved electrochemical performance with a capacity of 167 mA h g −1 at a current density of 5 mA g −1 and a capacity retention of 82.7% when the current density was increased to 40 mA g −1 , demonstrating fast sodium ion transfer and high rate capability. Prussian blue analogues prefer to be etched along the edge in HCl solution, resulting in much enhanced ionic diffusions and thus rate capability.
doi_str_mv 10.1039/c9qi00090a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2237841459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237841459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9c426f651b76a5c696b0c4ac957a9ceb0f36d217799df9b90d49b4ecd11b4693</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCpbajXsh4k4YTSaPaZal-CgUVOx-SDJJmzJtpklG6L83taKu3OSG5ONyOABcYnSHERH3WuwcQkggeQIGJWJlgRkjp3_u52AU4zobjCnCHA2Aezet0cl9GGiaZT6SXrntEiYP3aYLPr-nlYFBJgO17KRyrUt76C18DX2MTm6hansD5Va2ftmbCK0PMPrG9RvofP6VKZngTLwAZ1a20Yy-5xAsHh8W0-di_vI0m07mhSZ0nAqhacktZ1hVXDLNBVdIU6kFq6TQRiFLeFPiqhKisUIJ1FChqNENxopyQYbg5rg2h9_lPKle-z7kdLEuS1KNKabsoG6PSgcfYzC27oLbyLCvMaoPZdZT8Tb7KnOS8fURh6h_3G_ZddfYbK7-M-QTqz19GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237841459</pqid></control><display><type>article</type><title>Selective edge etching to improve the rate capability of Prussian blue analogues for sodium ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhu, Youhuan ; Wang, Bingxue ; Gan, Qingmeng ; Wang, Yanfang ; Wang, Zhengyu ; Xie, Jiwei ; Gu, Shuai ; Li, Zhiqiang ; Li, Yingzhi ; Ji, Zong-Wei ; Cheng, Hua ; Lu, Zhouguang</creator><creatorcontrib>Zhu, Youhuan ; Wang, Bingxue ; Gan, Qingmeng ; Wang, Yanfang ; Wang, Zhengyu ; Xie, Jiwei ; Gu, Shuai ; Li, Zhiqiang ; Li, Yingzhi ; Ji, Zong-Wei ; Cheng, Hua ; Lu, Zhouguang</creatorcontrib><description>Prussian blue analogues (PBA) possess a high theoretical specific capacity for sodium ion batteries. However, cycling PBA to a high current density causes severe capacity fading. Here, we develop a selective edge-etching approach to tackle this long-standing issue of poor rate capability. Well-crystallized PBA particles were produced by hydrothermal treatment of a sodium hexacyanoferrate precursor dissolved in muriatic acid solution, which were then eroded in hydrochloric acid solution to promote selective etching along the edges of the PBA crystals. The defect concentration ([Fe(CN) 6 ] 4− ) on the edge is denser than that at the face or corner, which stimulates the preferred etching of edges via the defect-induced heterogeneous mechanism. Due to the increasing exposed surface area and active sites, the etched PBA display much improved electrochemical performance with a capacity of 167 mA h g −1 at a current density of 5 mA g −1 and a capacity retention of 82.7% when the current density was increased to 40 mA g −1 , demonstrating fast sodium ion transfer and high rate capability. Prussian blue analogues prefer to be etched along the edge in HCl solution, resulting in much enhanced ionic diffusions and thus rate capability.</description><identifier>ISSN: 2052-1553</identifier><identifier>ISSN: 2052-1545</identifier><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/c9qi00090a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Batteries ; Crystal defects ; Crystallization ; Current density ; Electrochemical analysis ; Etching ; Hydrochloric acid ; Hydrothermal treatment ; Inorganic chemistry ; Iron cyanides ; Pigments ; Sodium ; Sodium-ion batteries</subject><ispartof>Inorganic chemistry frontiers, 2019-06, Vol.6 (6), p.1361-1366</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-9c426f651b76a5c696b0c4ac957a9ceb0f36d217799df9b90d49b4ecd11b4693</citedby><cites>FETCH-LOGICAL-c348t-9c426f651b76a5c696b0c4ac957a9ceb0f36d217799df9b90d49b4ecd11b4693</cites><orcidid>0000-0003-3769-9356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhu, Youhuan</creatorcontrib><creatorcontrib>Wang, Bingxue</creatorcontrib><creatorcontrib>Gan, Qingmeng</creatorcontrib><creatorcontrib>Wang, Yanfang</creatorcontrib><creatorcontrib>Wang, Zhengyu</creatorcontrib><creatorcontrib>Xie, Jiwei</creatorcontrib><creatorcontrib>Gu, Shuai</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Li, Yingzhi</creatorcontrib><creatorcontrib>Ji, Zong-Wei</creatorcontrib><creatorcontrib>Cheng, Hua</creatorcontrib><creatorcontrib>Lu, Zhouguang</creatorcontrib><title>Selective edge etching to improve the rate capability of Prussian blue analogues for sodium ion batteries</title><title>Inorganic chemistry frontiers</title><description>Prussian blue analogues (PBA) possess a high theoretical specific capacity for sodium ion batteries. However, cycling PBA to a high current density causes severe capacity fading. Here, we develop a selective edge-etching approach to tackle this long-standing issue of poor rate capability. Well-crystallized PBA particles were produced by hydrothermal treatment of a sodium hexacyanoferrate precursor dissolved in muriatic acid solution, which were then eroded in hydrochloric acid solution to promote selective etching along the edges of the PBA crystals. The defect concentration ([Fe(CN) 6 ] 4− ) on the edge is denser than that at the face or corner, which stimulates the preferred etching of edges via the defect-induced heterogeneous mechanism. Due to the increasing exposed surface area and active sites, the etched PBA display much improved electrochemical performance with a capacity of 167 mA h g −1 at a current density of 5 mA g −1 and a capacity retention of 82.7% when the current density was increased to 40 mA g −1 , demonstrating fast sodium ion transfer and high rate capability. Prussian blue analogues prefer to be etched along the edge in HCl solution, resulting in much enhanced ionic diffusions and thus rate capability.</description><subject>Batteries</subject><subject>Crystal defects</subject><subject>Crystallization</subject><subject>Current density</subject><subject>Electrochemical analysis</subject><subject>Etching</subject><subject>Hydrochloric acid</subject><subject>Hydrothermal treatment</subject><subject>Inorganic chemistry</subject><subject>Iron cyanides</subject><subject>Pigments</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><issn>2052-1553</issn><issn>2052-1545</issn><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgCpbajXsh4k4YTSaPaZal-CgUVOx-SDJJmzJtpklG6L83taKu3OSG5ONyOABcYnSHERH3WuwcQkggeQIGJWJlgRkjp3_u52AU4zobjCnCHA2Aezet0cl9GGiaZT6SXrntEiYP3aYLPr-nlYFBJgO17KRyrUt76C18DX2MTm6hansD5Va2ftmbCK0PMPrG9RvofP6VKZngTLwAZ1a20Yy-5xAsHh8W0-di_vI0m07mhSZ0nAqhacktZ1hVXDLNBVdIU6kFq6TQRiFLeFPiqhKisUIJ1FChqNENxopyQYbg5rg2h9_lPKle-z7kdLEuS1KNKabsoG6PSgcfYzC27oLbyLCvMaoPZdZT8Tb7KnOS8fURh6h_3G_ZddfYbK7-M-QTqz19GA</recordid><startdate>20190611</startdate><enddate>20190611</enddate><creator>Zhu, Youhuan</creator><creator>Wang, Bingxue</creator><creator>Gan, Qingmeng</creator><creator>Wang, Yanfang</creator><creator>Wang, Zhengyu</creator><creator>Xie, Jiwei</creator><creator>Gu, Shuai</creator><creator>Li, Zhiqiang</creator><creator>Li, Yingzhi</creator><creator>Ji, Zong-Wei</creator><creator>Cheng, Hua</creator><creator>Lu, Zhouguang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3769-9356</orcidid></search><sort><creationdate>20190611</creationdate><title>Selective edge etching to improve the rate capability of Prussian blue analogues for sodium ion batteries</title><author>Zhu, Youhuan ; Wang, Bingxue ; Gan, Qingmeng ; Wang, Yanfang ; Wang, Zhengyu ; Xie, Jiwei ; Gu, Shuai ; Li, Zhiqiang ; Li, Yingzhi ; Ji, Zong-Wei ; Cheng, Hua ; Lu, Zhouguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9c426f651b76a5c696b0c4ac957a9ceb0f36d217799df9b90d49b4ecd11b4693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Crystal defects</topic><topic>Crystallization</topic><topic>Current density</topic><topic>Electrochemical analysis</topic><topic>Etching</topic><topic>Hydrochloric acid</topic><topic>Hydrothermal treatment</topic><topic>Inorganic chemistry</topic><topic>Iron cyanides</topic><topic>Pigments</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Youhuan</creatorcontrib><creatorcontrib>Wang, Bingxue</creatorcontrib><creatorcontrib>Gan, Qingmeng</creatorcontrib><creatorcontrib>Wang, Yanfang</creatorcontrib><creatorcontrib>Wang, Zhengyu</creatorcontrib><creatorcontrib>Xie, Jiwei</creatorcontrib><creatorcontrib>Gu, Shuai</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Li, Yingzhi</creatorcontrib><creatorcontrib>Ji, Zong-Wei</creatorcontrib><creatorcontrib>Cheng, Hua</creatorcontrib><creatorcontrib>Lu, Zhouguang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Youhuan</au><au>Wang, Bingxue</au><au>Gan, Qingmeng</au><au>Wang, Yanfang</au><au>Wang, Zhengyu</au><au>Xie, Jiwei</au><au>Gu, Shuai</au><au>Li, Zhiqiang</au><au>Li, Yingzhi</au><au>Ji, Zong-Wei</au><au>Cheng, Hua</au><au>Lu, Zhouguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective edge etching to improve the rate capability of Prussian blue analogues for sodium ion batteries</atitle><jtitle>Inorganic chemistry frontiers</jtitle><date>2019-06-11</date><risdate>2019</risdate><volume>6</volume><issue>6</issue><spage>1361</spage><epage>1366</epage><pages>1361-1366</pages><issn>2052-1553</issn><issn>2052-1545</issn><eissn>2052-1553</eissn><abstract>Prussian blue analogues (PBA) possess a high theoretical specific capacity for sodium ion batteries. However, cycling PBA to a high current density causes severe capacity fading. Here, we develop a selective edge-etching approach to tackle this long-standing issue of poor rate capability. Well-crystallized PBA particles were produced by hydrothermal treatment of a sodium hexacyanoferrate precursor dissolved in muriatic acid solution, which were then eroded in hydrochloric acid solution to promote selective etching along the edges of the PBA crystals. The defect concentration ([Fe(CN) 6 ] 4− ) on the edge is denser than that at the face or corner, which stimulates the preferred etching of edges via the defect-induced heterogeneous mechanism. Due to the increasing exposed surface area and active sites, the etched PBA display much improved electrochemical performance with a capacity of 167 mA h g −1 at a current density of 5 mA g −1 and a capacity retention of 82.7% when the current density was increased to 40 mA g −1 , demonstrating fast sodium ion transfer and high rate capability. Prussian blue analogues prefer to be etched along the edge in HCl solution, resulting in much enhanced ionic diffusions and thus rate capability.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9qi00090a</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3769-9356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-1553
ispartof Inorganic chemistry frontiers, 2019-06, Vol.6 (6), p.1361-1366
issn 2052-1553
2052-1545
2052-1553
language eng
recordid cdi_proquest_journals_2237841459
source Royal Society Of Chemistry Journals 2008-
subjects Batteries
Crystal defects
Crystallization
Current density
Electrochemical analysis
Etching
Hydrochloric acid
Hydrothermal treatment
Inorganic chemistry
Iron cyanides
Pigments
Sodium
Sodium-ion batteries
title Selective edge etching to improve the rate capability of Prussian blue analogues for sodium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20edge%20etching%20to%20improve%20the%20rate%20capability%20of%20Prussian%20blue%20analogues%20for%20sodium%20ion%20batteries&rft.jtitle=Inorganic%20chemistry%20frontiers&rft.au=Zhu,%20Youhuan&rft.date=2019-06-11&rft.volume=6&rft.issue=6&rft.spage=1361&rft.epage=1366&rft.pages=1361-1366&rft.issn=2052-1553&rft.eissn=2052-1553&rft_id=info:doi/10.1039/c9qi00090a&rft_dat=%3Cproquest_cross%3E2237841459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237841459&rft_id=info:pmid/&rfr_iscdi=true