Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics
Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution....
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2019-06, Vol.29 (24), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 29 |
creator | Ho, Dong Hae Cheon, Siuk Hong, Panuk Park, Jong Hwan Suk, Ji Won Kim, Do Hwan Han, Joong Tark Cho, Jeong Ho |
description | Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution. During the jetting process with pressurized air, the solvent evaporates, which results in the deposition of nanofibers in the direction of gas flow. Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) dissolved in acetone is blow‐spun onto target substrate. Conductive nonwoven fabric is also fabricated from a blend of single‐walled carbon nanotubes (SWCNTs) and PVdF‐HFP. An all‐fabric capacitive strain sensor is fabricated by vertically stacking the PVdF‐HFP dielectric fabric and the SWCNT/PVdF‐HFP conductive fabric. The resulting sensor shows a high gauge factor of over 130 and excellent mechanical durability. The hierarchical morphology of nanofibers enables the development of superhydrophobic fabric and their electrical and thermal conductivities facilitate the application to a wearable heater and a flexible heat‐dissipation sheet, respectively. Finally, the conductive nonwoven fabric is successfully applied to the detection of various biosignals. The demonstrated facile and cost‐effective fabrication of nonwoven fabric by the blow‐spinning technique provides numerous possibilities for further development of technologies ranging from wearable electronics to textronics.
The fabrication of nonwoven fabric by blow spinning is demonstrated. The blow‐spun nonwoven fabric is successfully applied to various smart textronics: a capacitive strain sensor, superhydrophobic fabric, a wearable heater, a flexible heat‐dissipation sheet, and biosignal detection systems. |
doi_str_mv | 10.1002/adfm.201900025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2237776332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237776332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3565-3975cb91fb0a203a8a7aafe85add784f0f6f918adea185d5bef133393bcffde13</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiTrF9dZyMbaGA1MLQIrFZl8QWqdK42AmhG4_AM_IkpCoqI9PdSd9_uvsIuWR0wCjl15ib9YBTltBuEkekxyIWhUB5fHzo2cspOfN-RSmTEoY9Mp43ZV2YpsrqwlZYBos1ujpY6o_a2arIfNAW9WswLm37_fm12DRV8Gir1r7rKphi6jrinJwYLL2--K198jy9XU7uw9nT3cNkNAszEJEIIZEiSxNmUoqcAsYoEY2OBea5jIeGmsgkLMZcI4tFLlJtGAAkkGbG5JpBn1zt926cfWu0r9XKNq672SvOQUoZAfCOGuypzFnvnTZq44rup61iVO08qZ0ndfDUBZJ9oC1Kvf2HVqOb6fwv-wOj9m48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237776332</pqid></control><display><type>article</type><title>Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ho, Dong Hae ; Cheon, Siuk ; Hong, Panuk ; Park, Jong Hwan ; Suk, Ji Won ; Kim, Do Hwan ; Han, Joong Tark ; Cho, Jeong Ho</creator><creatorcontrib>Ho, Dong Hae ; Cheon, Siuk ; Hong, Panuk ; Park, Jong Hwan ; Suk, Ji Won ; Kim, Do Hwan ; Han, Joong Tark ; Cho, Jeong Ho</creatorcontrib><description>Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution. During the jetting process with pressurized air, the solvent evaporates, which results in the deposition of nanofibers in the direction of gas flow. Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) dissolved in acetone is blow‐spun onto target substrate. Conductive nonwoven fabric is also fabricated from a blend of single‐walled carbon nanotubes (SWCNTs) and PVdF‐HFP. An all‐fabric capacitive strain sensor is fabricated by vertically stacking the PVdF‐HFP dielectric fabric and the SWCNT/PVdF‐HFP conductive fabric. The resulting sensor shows a high gauge factor of over 130 and excellent mechanical durability. The hierarchical morphology of nanofibers enables the development of superhydrophobic fabric and their electrical and thermal conductivities facilitate the application to a wearable heater and a flexible heat‐dissipation sheet, respectively. Finally, the conductive nonwoven fabric is successfully applied to the detection of various biosignals. The demonstrated facile and cost‐effective fabrication of nonwoven fabric by the blow‐spinning technique provides numerous possibilities for further development of technologies ranging from wearable electronics to textronics.
The fabrication of nonwoven fabric by blow spinning is demonstrated. The blow‐spun nonwoven fabric is successfully applied to various smart textronics: a capacitive strain sensor, superhydrophobic fabric, a wearable heater, a flexible heat‐dissipation sheet, and biosignal detection systems.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201900025</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acetone ; biomedical device ; blow spinning ; Compressed air ; Gas flow ; Hydrophobicity ; Materials science ; Morphology ; multifunctional ; nanofiber ; Nanofibers ; nonwoven fabric ; Nonwoven fabrics ; Single wall carbon nanotubes ; Solvents ; strain sensor ; Substrates ; textronics ; Vinylidene ; Vinylidene fluoride ; Wearable technology</subject><ispartof>Advanced functional materials, 2019-06, Vol.29 (24), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3565-3975cb91fb0a203a8a7aafe85add784f0f6f918adea185d5bef133393bcffde13</citedby><cites>FETCH-LOGICAL-c3565-3975cb91fb0a203a8a7aafe85add784f0f6f918adea185d5bef133393bcffde13</cites><orcidid>0000-0002-1030-9920 ; 0000-0003-3003-8125 ; 0000-0002-3351-3975 ; 0000-0002-4850-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201900025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201900025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Ho, Dong Hae</creatorcontrib><creatorcontrib>Cheon, Siuk</creatorcontrib><creatorcontrib>Hong, Panuk</creatorcontrib><creatorcontrib>Park, Jong Hwan</creatorcontrib><creatorcontrib>Suk, Ji Won</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Han, Joong Tark</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><title>Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics</title><title>Advanced functional materials</title><description>Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution. During the jetting process with pressurized air, the solvent evaporates, which results in the deposition of nanofibers in the direction of gas flow. Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) dissolved in acetone is blow‐spun onto target substrate. Conductive nonwoven fabric is also fabricated from a blend of single‐walled carbon nanotubes (SWCNTs) and PVdF‐HFP. An all‐fabric capacitive strain sensor is fabricated by vertically stacking the PVdF‐HFP dielectric fabric and the SWCNT/PVdF‐HFP conductive fabric. The resulting sensor shows a high gauge factor of over 130 and excellent mechanical durability. The hierarchical morphology of nanofibers enables the development of superhydrophobic fabric and their electrical and thermal conductivities facilitate the application to a wearable heater and a flexible heat‐dissipation sheet, respectively. Finally, the conductive nonwoven fabric is successfully applied to the detection of various biosignals. The demonstrated facile and cost‐effective fabrication of nonwoven fabric by the blow‐spinning technique provides numerous possibilities for further development of technologies ranging from wearable electronics to textronics.
The fabrication of nonwoven fabric by blow spinning is demonstrated. The blow‐spun nonwoven fabric is successfully applied to various smart textronics: a capacitive strain sensor, superhydrophobic fabric, a wearable heater, a flexible heat‐dissipation sheet, and biosignal detection systems.</description><subject>Acetone</subject><subject>biomedical device</subject><subject>blow spinning</subject><subject>Compressed air</subject><subject>Gas flow</subject><subject>Hydrophobicity</subject><subject>Materials science</subject><subject>Morphology</subject><subject>multifunctional</subject><subject>nanofiber</subject><subject>Nanofibers</subject><subject>nonwoven fabric</subject><subject>Nonwoven fabrics</subject><subject>Single wall carbon nanotubes</subject><subject>Solvents</subject><subject>strain sensor</subject><subject>Substrates</subject><subject>textronics</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMkdiTrF9dZyMbaGA1MLQIrFZl8QWqdK42AmhG4_AM_IkpCoqI9PdSd9_uvsIuWR0wCjl15ib9YBTltBuEkekxyIWhUB5fHzo2cspOfN-RSmTEoY9Mp43ZV2YpsrqwlZYBos1ujpY6o_a2arIfNAW9WswLm37_fm12DRV8Gir1r7rKphi6jrinJwYLL2--K198jy9XU7uw9nT3cNkNAszEJEIIZEiSxNmUoqcAsYoEY2OBea5jIeGmsgkLMZcI4tFLlJtGAAkkGbG5JpBn1zt926cfWu0r9XKNq672SvOQUoZAfCOGuypzFnvnTZq44rup61iVO08qZ0ndfDUBZJ9oC1Kvf2HVqOb6fwv-wOj9m48</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ho, Dong Hae</creator><creator>Cheon, Siuk</creator><creator>Hong, Panuk</creator><creator>Park, Jong Hwan</creator><creator>Suk, Ji Won</creator><creator>Kim, Do Hwan</creator><creator>Han, Joong Tark</creator><creator>Cho, Jeong Ho</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid><orcidid>https://orcid.org/0000-0003-3003-8125</orcidid><orcidid>https://orcid.org/0000-0002-3351-3975</orcidid><orcidid>https://orcid.org/0000-0002-4850-2566</orcidid></search><sort><creationdate>20190601</creationdate><title>Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics</title><author>Ho, Dong Hae ; Cheon, Siuk ; Hong, Panuk ; Park, Jong Hwan ; Suk, Ji Won ; Kim, Do Hwan ; Han, Joong Tark ; Cho, Jeong Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3565-3975cb91fb0a203a8a7aafe85add784f0f6f918adea185d5bef133393bcffde13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetone</topic><topic>biomedical device</topic><topic>blow spinning</topic><topic>Compressed air</topic><topic>Gas flow</topic><topic>Hydrophobicity</topic><topic>Materials science</topic><topic>Morphology</topic><topic>multifunctional</topic><topic>nanofiber</topic><topic>Nanofibers</topic><topic>nonwoven fabric</topic><topic>Nonwoven fabrics</topic><topic>Single wall carbon nanotubes</topic><topic>Solvents</topic><topic>strain sensor</topic><topic>Substrates</topic><topic>textronics</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Dong Hae</creatorcontrib><creatorcontrib>Cheon, Siuk</creatorcontrib><creatorcontrib>Hong, Panuk</creatorcontrib><creatorcontrib>Park, Jong Hwan</creatorcontrib><creatorcontrib>Suk, Ji Won</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Han, Joong Tark</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Dong Hae</au><au>Cheon, Siuk</au><au>Hong, Panuk</au><au>Park, Jong Hwan</au><au>Suk, Ji Won</au><au>Kim, Do Hwan</au><au>Han, Joong Tark</au><au>Cho, Jeong Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics</atitle><jtitle>Advanced functional materials</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>29</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution. During the jetting process with pressurized air, the solvent evaporates, which results in the deposition of nanofibers in the direction of gas flow. Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) dissolved in acetone is blow‐spun onto target substrate. Conductive nonwoven fabric is also fabricated from a blend of single‐walled carbon nanotubes (SWCNTs) and PVdF‐HFP. An all‐fabric capacitive strain sensor is fabricated by vertically stacking the PVdF‐HFP dielectric fabric and the SWCNT/PVdF‐HFP conductive fabric. The resulting sensor shows a high gauge factor of over 130 and excellent mechanical durability. The hierarchical morphology of nanofibers enables the development of superhydrophobic fabric and their electrical and thermal conductivities facilitate the application to a wearable heater and a flexible heat‐dissipation sheet, respectively. Finally, the conductive nonwoven fabric is successfully applied to the detection of various biosignals. The demonstrated facile and cost‐effective fabrication of nonwoven fabric by the blow‐spinning technique provides numerous possibilities for further development of technologies ranging from wearable electronics to textronics.
The fabrication of nonwoven fabric by blow spinning is demonstrated. The blow‐spun nonwoven fabric is successfully applied to various smart textronics: a capacitive strain sensor, superhydrophobic fabric, a wearable heater, a flexible heat‐dissipation sheet, and biosignal detection systems.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201900025</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid><orcidid>https://orcid.org/0000-0003-3003-8125</orcidid><orcidid>https://orcid.org/0000-0002-3351-3975</orcidid><orcidid>https://orcid.org/0000-0002-4850-2566</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2019-06, Vol.29 (24), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2237776332 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acetone biomedical device blow spinning Compressed air Gas flow Hydrophobicity Materials science Morphology multifunctional nanofiber Nanofibers nonwoven fabric Nonwoven fabrics Single wall carbon nanotubes Solvents strain sensor Substrates textronics Vinylidene Vinylidene fluoride Wearable technology |
title | Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20Smart%20Textronics%20with%20Blow%E2%80%90Spun%20Nonwoven%20Fabrics&rft.jtitle=Advanced%20functional%20materials&rft.au=Ho,%20Dong%20Hae&rft.date=2019-06-01&rft.volume=29&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201900025&rft_dat=%3Cproquest_cross%3E2237776332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237776332&rft_id=info:pmid/&rfr_iscdi=true |