Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics

Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-06, Vol.29 (24), p.n/a
Hauptverfasser: Ho, Dong Hae, Cheon, Siuk, Hong, Panuk, Park, Jong Hwan, Suk, Ji Won, Kim, Do Hwan, Han, Joong Tark, Cho, Jeong Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 29
creator Ho, Dong Hae
Cheon, Siuk
Hong, Panuk
Park, Jong Hwan
Suk, Ji Won
Kim, Do Hwan
Han, Joong Tark
Cho, Jeong Ho
description Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution. During the jetting process with pressurized air, the solvent evaporates, which results in the deposition of nanofibers in the direction of gas flow. Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) dissolved in acetone is blow‐spun onto target substrate. Conductive nonwoven fabric is also fabricated from a blend of single‐walled carbon nanotubes (SWCNTs) and PVdF‐HFP. An all‐fabric capacitive strain sensor is fabricated by vertically stacking the PVdF‐HFP dielectric fabric and the SWCNT/PVdF‐HFP conductive fabric. The resulting sensor shows a high gauge factor of over 130 and excellent mechanical durability. The hierarchical morphology of nanofibers enables the development of superhydrophobic fabric and their electrical and thermal conductivities facilitate the application to a wearable heater and a flexible heat‐dissipation sheet, respectively. Finally, the conductive nonwoven fabric is successfully applied to the detection of various biosignals. The demonstrated facile and cost‐effective fabrication of nonwoven fabric by the blow‐spinning technique provides numerous possibilities for further development of technologies ranging from wearable electronics to textronics. The fabrication of nonwoven fabric by blow spinning is demonstrated. The blow‐spun nonwoven fabric is successfully applied to various smart textronics: a capacitive strain sensor, superhydrophobic fabric, a wearable heater, a flexible heat‐dissipation sheet, and biosignal detection systems.
doi_str_mv 10.1002/adfm.201900025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2237776332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237776332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3565-3975cb91fb0a203a8a7aafe85add784f0f6f918adea185d5bef133393bcffde13</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiTrF9dZyMbaGA1MLQIrFZl8QWqdK42AmhG4_AM_IkpCoqI9PdSd9_uvsIuWR0wCjl15ib9YBTltBuEkekxyIWhUB5fHzo2cspOfN-RSmTEoY9Mp43ZV2YpsrqwlZYBos1ujpY6o_a2arIfNAW9WswLm37_fm12DRV8Gir1r7rKphi6jrinJwYLL2--K198jy9XU7uw9nT3cNkNAszEJEIIZEiSxNmUoqcAsYoEY2OBea5jIeGmsgkLMZcI4tFLlJtGAAkkGbG5JpBn1zt926cfWu0r9XKNq672SvOQUoZAfCOGuypzFnvnTZq44rup61iVO08qZ0ndfDUBZJ9oC1Kvf2HVqOb6fwv-wOj9m48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237776332</pqid></control><display><type>article</type><title>Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ho, Dong Hae ; Cheon, Siuk ; Hong, Panuk ; Park, Jong Hwan ; Suk, Ji Won ; Kim, Do Hwan ; Han, Joong Tark ; Cho, Jeong Ho</creator><creatorcontrib>Ho, Dong Hae ; Cheon, Siuk ; Hong, Panuk ; Park, Jong Hwan ; Suk, Ji Won ; Kim, Do Hwan ; Han, Joong Tark ; Cho, Jeong Ho</creatorcontrib><description>Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution. During the jetting process with pressurized air, the solvent evaporates, which results in the deposition of nanofibers in the direction of gas flow. Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) dissolved in acetone is blow‐spun onto target substrate. Conductive nonwoven fabric is also fabricated from a blend of single‐walled carbon nanotubes (SWCNTs) and PVdF‐HFP. An all‐fabric capacitive strain sensor is fabricated by vertically stacking the PVdF‐HFP dielectric fabric and the SWCNT/PVdF‐HFP conductive fabric. The resulting sensor shows a high gauge factor of over 130 and excellent mechanical durability. The hierarchical morphology of nanofibers enables the development of superhydrophobic fabric and their electrical and thermal conductivities facilitate the application to a wearable heater and a flexible heat‐dissipation sheet, respectively. Finally, the conductive nonwoven fabric is successfully applied to the detection of various biosignals. The demonstrated facile and cost‐effective fabrication of nonwoven fabric by the blow‐spinning technique provides numerous possibilities for further development of technologies ranging from wearable electronics to textronics. The fabrication of nonwoven fabric by blow spinning is demonstrated. The blow‐spun nonwoven fabric is successfully applied to various smart textronics: a capacitive strain sensor, superhydrophobic fabric, a wearable heater, a flexible heat‐dissipation sheet, and biosignal detection systems.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201900025</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acetone ; biomedical device ; blow spinning ; Compressed air ; Gas flow ; Hydrophobicity ; Materials science ; Morphology ; multifunctional ; nanofiber ; Nanofibers ; nonwoven fabric ; Nonwoven fabrics ; Single wall carbon nanotubes ; Solvents ; strain sensor ; Substrates ; textronics ; Vinylidene ; Vinylidene fluoride ; Wearable technology</subject><ispartof>Advanced functional materials, 2019-06, Vol.29 (24), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3565-3975cb91fb0a203a8a7aafe85add784f0f6f918adea185d5bef133393bcffde13</citedby><cites>FETCH-LOGICAL-c3565-3975cb91fb0a203a8a7aafe85add784f0f6f918adea185d5bef133393bcffde13</cites><orcidid>0000-0002-1030-9920 ; 0000-0003-3003-8125 ; 0000-0002-3351-3975 ; 0000-0002-4850-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201900025$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201900025$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Ho, Dong Hae</creatorcontrib><creatorcontrib>Cheon, Siuk</creatorcontrib><creatorcontrib>Hong, Panuk</creatorcontrib><creatorcontrib>Park, Jong Hwan</creatorcontrib><creatorcontrib>Suk, Ji Won</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Han, Joong Tark</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><title>Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics</title><title>Advanced functional materials</title><description>Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution. During the jetting process with pressurized air, the solvent evaporates, which results in the deposition of nanofibers in the direction of gas flow. Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) dissolved in acetone is blow‐spun onto target substrate. Conductive nonwoven fabric is also fabricated from a blend of single‐walled carbon nanotubes (SWCNTs) and PVdF‐HFP. An all‐fabric capacitive strain sensor is fabricated by vertically stacking the PVdF‐HFP dielectric fabric and the SWCNT/PVdF‐HFP conductive fabric. The resulting sensor shows a high gauge factor of over 130 and excellent mechanical durability. The hierarchical morphology of nanofibers enables the development of superhydrophobic fabric and their electrical and thermal conductivities facilitate the application to a wearable heater and a flexible heat‐dissipation sheet, respectively. Finally, the conductive nonwoven fabric is successfully applied to the detection of various biosignals. The demonstrated facile and cost‐effective fabrication of nonwoven fabric by the blow‐spinning technique provides numerous possibilities for further development of technologies ranging from wearable electronics to textronics. The fabrication of nonwoven fabric by blow spinning is demonstrated. The blow‐spun nonwoven fabric is successfully applied to various smart textronics: a capacitive strain sensor, superhydrophobic fabric, a wearable heater, a flexible heat‐dissipation sheet, and biosignal detection systems.</description><subject>Acetone</subject><subject>biomedical device</subject><subject>blow spinning</subject><subject>Compressed air</subject><subject>Gas flow</subject><subject>Hydrophobicity</subject><subject>Materials science</subject><subject>Morphology</subject><subject>multifunctional</subject><subject>nanofiber</subject><subject>Nanofibers</subject><subject>nonwoven fabric</subject><subject>Nonwoven fabrics</subject><subject>Single wall carbon nanotubes</subject><subject>Solvents</subject><subject>strain sensor</subject><subject>Substrates</subject><subject>textronics</subject><subject>Vinylidene</subject><subject>Vinylidene fluoride</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMkdiTrF9dZyMbaGA1MLQIrFZl8QWqdK42AmhG4_AM_IkpCoqI9PdSd9_uvsIuWR0wCjl15ib9YBTltBuEkekxyIWhUB5fHzo2cspOfN-RSmTEoY9Mp43ZV2YpsrqwlZYBos1ujpY6o_a2arIfNAW9WswLm37_fm12DRV8Gir1r7rKphi6jrinJwYLL2--K198jy9XU7uw9nT3cNkNAszEJEIIZEiSxNmUoqcAsYoEY2OBea5jIeGmsgkLMZcI4tFLlJtGAAkkGbG5JpBn1zt926cfWu0r9XKNq672SvOQUoZAfCOGuypzFnvnTZq44rup61iVO08qZ0ndfDUBZJ9oC1Kvf2HVqOb6fwv-wOj9m48</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ho, Dong Hae</creator><creator>Cheon, Siuk</creator><creator>Hong, Panuk</creator><creator>Park, Jong Hwan</creator><creator>Suk, Ji Won</creator><creator>Kim, Do Hwan</creator><creator>Han, Joong Tark</creator><creator>Cho, Jeong Ho</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid><orcidid>https://orcid.org/0000-0003-3003-8125</orcidid><orcidid>https://orcid.org/0000-0002-3351-3975</orcidid><orcidid>https://orcid.org/0000-0002-4850-2566</orcidid></search><sort><creationdate>20190601</creationdate><title>Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics</title><author>Ho, Dong Hae ; Cheon, Siuk ; Hong, Panuk ; Park, Jong Hwan ; Suk, Ji Won ; Kim, Do Hwan ; Han, Joong Tark ; Cho, Jeong Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3565-3975cb91fb0a203a8a7aafe85add784f0f6f918adea185d5bef133393bcffde13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetone</topic><topic>biomedical device</topic><topic>blow spinning</topic><topic>Compressed air</topic><topic>Gas flow</topic><topic>Hydrophobicity</topic><topic>Materials science</topic><topic>Morphology</topic><topic>multifunctional</topic><topic>nanofiber</topic><topic>Nanofibers</topic><topic>nonwoven fabric</topic><topic>Nonwoven fabrics</topic><topic>Single wall carbon nanotubes</topic><topic>Solvents</topic><topic>strain sensor</topic><topic>Substrates</topic><topic>textronics</topic><topic>Vinylidene</topic><topic>Vinylidene fluoride</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Dong Hae</creatorcontrib><creatorcontrib>Cheon, Siuk</creatorcontrib><creatorcontrib>Hong, Panuk</creatorcontrib><creatorcontrib>Park, Jong Hwan</creatorcontrib><creatorcontrib>Suk, Ji Won</creatorcontrib><creatorcontrib>Kim, Do Hwan</creatorcontrib><creatorcontrib>Han, Joong Tark</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Dong Hae</au><au>Cheon, Siuk</au><au>Hong, Panuk</au><au>Park, Jong Hwan</au><au>Suk, Ji Won</au><au>Kim, Do Hwan</au><au>Han, Joong Tark</au><au>Cho, Jeong Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics</atitle><jtitle>Advanced functional materials</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>29</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Here, the fabrication of nonwoven fabric by blow spinning and its application to smart textronics are demonstrated. The blow‐spinning system is composed of two parallel concentric fluid streams: i) a polymer dissolved in a volatile solvent and ii) compressed air flowing around the polymer solution. During the jetting process with pressurized air, the solvent evaporates, which results in the deposition of nanofibers in the direction of gas flow. Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) dissolved in acetone is blow‐spun onto target substrate. Conductive nonwoven fabric is also fabricated from a blend of single‐walled carbon nanotubes (SWCNTs) and PVdF‐HFP. An all‐fabric capacitive strain sensor is fabricated by vertically stacking the PVdF‐HFP dielectric fabric and the SWCNT/PVdF‐HFP conductive fabric. The resulting sensor shows a high gauge factor of over 130 and excellent mechanical durability. The hierarchical morphology of nanofibers enables the development of superhydrophobic fabric and their electrical and thermal conductivities facilitate the application to a wearable heater and a flexible heat‐dissipation sheet, respectively. Finally, the conductive nonwoven fabric is successfully applied to the detection of various biosignals. The demonstrated facile and cost‐effective fabrication of nonwoven fabric by the blow‐spinning technique provides numerous possibilities for further development of technologies ranging from wearable electronics to textronics. The fabrication of nonwoven fabric by blow spinning is demonstrated. The blow‐spun nonwoven fabric is successfully applied to various smart textronics: a capacitive strain sensor, superhydrophobic fabric, a wearable heater, a flexible heat‐dissipation sheet, and biosignal detection systems.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201900025</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid><orcidid>https://orcid.org/0000-0003-3003-8125</orcidid><orcidid>https://orcid.org/0000-0002-3351-3975</orcidid><orcidid>https://orcid.org/0000-0002-4850-2566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-06, Vol.29 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2237776332
source Wiley Online Library Journals Frontfile Complete
subjects Acetone
biomedical device
blow spinning
Compressed air
Gas flow
Hydrophobicity
Materials science
Morphology
multifunctional
nanofiber
Nanofibers
nonwoven fabric
Nonwoven fabrics
Single wall carbon nanotubes
Solvents
strain sensor
Substrates
textronics
Vinylidene
Vinylidene fluoride
Wearable technology
title Multifunctional Smart Textronics with Blow‐Spun Nonwoven Fabrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20Smart%20Textronics%20with%20Blow%E2%80%90Spun%20Nonwoven%20Fabrics&rft.jtitle=Advanced%20functional%20materials&rft.au=Ho,%20Dong%20Hae&rft.date=2019-06-01&rft.volume=29&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201900025&rft_dat=%3Cproquest_cross%3E2237776332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237776332&rft_id=info:pmid/&rfr_iscdi=true