Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule

Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-06, Vol.30 (12), p.11771-11777
Hauptverfasser: Siva Pratap Reddy, M., Puneetha, Peddathimula, Lee, Jung-Hee, Shim, Jaesool, Im, Ki-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11777
container_issue 12
container_start_page 11771
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Siva Pratap Reddy, M.
Puneetha, Peddathimula
Lee, Jung-Hee
Shim, Jaesool
Im, Ki-Sik
description Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and light-sensitive mechanism of polarity switching in metal/organic/n-GaN bio-hybrid photodiodes based on salmon DNA-cetyltrimethylammonium chloride (SDNA-surfactant). The SDNA-surfactant/n-GaN bio-hybrid temperature photodiode (Bio-HTPD) shows negative bias shift of current (I)–voltage (V) plots by 0.70 and 0.42 V compared to zero-bias at temperatures of 275 and 300 K, respectively, under light illumination. However, the I–V plots of the Bio-HTPD moved towards positive bias by 0.08 V compared to zero-bias at 325 K under light irradiation. This phenomenon resulted in electrically negative photocurrents up to room temperature, which remarkably switched to positive photocurrents at above room temperature. The temperature variations are closely associated with charge activation and unidirectional transport in the SDNA-surfactant biomolecule. Moreover, the change from negative to positive photocurrent could be related to high electron–hole pair generation at higher transition temperature. The formation of an energy band model with thermal hopping is proposed, which explains the reasonable charge transport mechanism.
doi_str_mv 10.1007/s10854-019-01542-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2237767928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237767928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2aa8232ba6cabc86637d8c6c2f98c5df2dbbf88069521a0809782b5b366145cd3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdWwek0xmKT6qUHRTwV3Ia9qUmUlNpkLX_nGjFdy5uBzu5Zxz4QPgkuBrgnE9ywRLXiFMmjK8oogdgQnhNUOVpG_HYIIbXqOKU3oKznLeYIxFxeQEfC59v_VJj7vkEdSDg11YrUeU_ZDDGD487L1d6yHkHoahLKPuZjGtysXOBjTXz9CEiNZ7k4KD418Z3K7jGF2IzkOjs3cwDjDrri9y93zznepj5-2u8-fgpNVd9he_OgWvD_fL20e0eJk_3d4skGWkGRHVWlJGjRZWGyuFYLWTVljaNtJy11JnTCslFg2nRGOJm1pSww0TglTcOjYFV4febYrvO59HtYm7NJSXilJW16JuqCwuenDZFHNOvlXbFHqd9opg9Q1bHWCrAlv9wFashNghlIt5WPn0V_1P6gsxVIQD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237767928</pqid></control><display><type>article</type><title>Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule</title><source>Springer Nature - Complete Springer Journals</source><creator>Siva Pratap Reddy, M. ; Puneetha, Peddathimula ; Lee, Jung-Hee ; Shim, Jaesool ; Im, Ki-Sik</creator><creatorcontrib>Siva Pratap Reddy, M. ; Puneetha, Peddathimula ; Lee, Jung-Hee ; Shim, Jaesool ; Im, Ki-Sik</creatorcontrib><description>Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and light-sensitive mechanism of polarity switching in metal/organic/n-GaN bio-hybrid photodiodes based on salmon DNA-cetyltrimethylammonium chloride (SDNA-surfactant). The SDNA-surfactant/n-GaN bio-hybrid temperature photodiode (Bio-HTPD) shows negative bias shift of current (I)–voltage (V) plots by 0.70 and 0.42 V compared to zero-bias at temperatures of 275 and 300 K, respectively, under light illumination. However, the I–V plots of the Bio-HTPD moved towards positive bias by 0.08 V compared to zero-bias at 325 K under light irradiation. This phenomenon resulted in electrically negative photocurrents up to room temperature, which remarkably switched to positive photocurrents at above room temperature. The temperature variations are closely associated with charge activation and unidirectional transport in the SDNA-surfactant biomolecule. Moreover, the change from negative to positive photocurrent could be related to high electron–hole pair generation at higher transition temperature. The formation of an energy band model with thermal hopping is proposed, which explains the reasonable charge transport mechanism.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-01542-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bias ; Biomolecules ; Characterization and Evaluation of Materials ; Charge transport ; Chemistry and Materials Science ; Deoxyribonucleic acid ; DNA ; Light ; Light irradiation ; Materials Science ; Optical and Electronic Materials ; Photodiodes ; Photoelectric effect ; Photoelectric emission ; Polarity ; Salmon ; Surfactants ; Temperature ; Transition temperature</subject><ispartof>Journal of materials science. Materials in electronics, 2019-06, Vol.30 (12), p.11771-11777</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2aa8232ba6cabc86637d8c6c2f98c5df2dbbf88069521a0809782b5b366145cd3</citedby><cites>FETCH-LOGICAL-c319t-2aa8232ba6cabc86637d8c6c2f98c5df2dbbf88069521a0809782b5b366145cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-01542-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-01542-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Siva Pratap Reddy, M.</creatorcontrib><creatorcontrib>Puneetha, Peddathimula</creatorcontrib><creatorcontrib>Lee, Jung-Hee</creatorcontrib><creatorcontrib>Shim, Jaesool</creatorcontrib><creatorcontrib>Im, Ki-Sik</creatorcontrib><title>Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and light-sensitive mechanism of polarity switching in metal/organic/n-GaN bio-hybrid photodiodes based on salmon DNA-cetyltrimethylammonium chloride (SDNA-surfactant). The SDNA-surfactant/n-GaN bio-hybrid temperature photodiode (Bio-HTPD) shows negative bias shift of current (I)–voltage (V) plots by 0.70 and 0.42 V compared to zero-bias at temperatures of 275 and 300 K, respectively, under light illumination. However, the I–V plots of the Bio-HTPD moved towards positive bias by 0.08 V compared to zero-bias at 325 K under light irradiation. This phenomenon resulted in electrically negative photocurrents up to room temperature, which remarkably switched to positive photocurrents at above room temperature. The temperature variations are closely associated with charge activation and unidirectional transport in the SDNA-surfactant biomolecule. Moreover, the change from negative to positive photocurrent could be related to high electron–hole pair generation at higher transition temperature. The formation of an energy band model with thermal hopping is proposed, which explains the reasonable charge transport mechanism.</description><subject>Bias</subject><subject>Biomolecules</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Light</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Photodiodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polarity</subject><subject>Salmon</subject><subject>Surfactants</subject><subject>Temperature</subject><subject>Transition temperature</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdWwek0xmKT6qUHRTwV3Ia9qUmUlNpkLX_nGjFdy5uBzu5Zxz4QPgkuBrgnE9ywRLXiFMmjK8oogdgQnhNUOVpG_HYIIbXqOKU3oKznLeYIxFxeQEfC59v_VJj7vkEdSDg11YrUeU_ZDDGD487L1d6yHkHoahLKPuZjGtysXOBjTXz9CEiNZ7k4KD418Z3K7jGF2IzkOjs3cwDjDrri9y93zznepj5-2u8-fgpNVd9he_OgWvD_fL20e0eJk_3d4skGWkGRHVWlJGjRZWGyuFYLWTVljaNtJy11JnTCslFg2nRGOJm1pSww0TglTcOjYFV4febYrvO59HtYm7NJSXilJW16JuqCwuenDZFHNOvlXbFHqd9opg9Q1bHWCrAlv9wFashNghlIt5WPn0V_1P6gsxVIQD</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Siva Pratap Reddy, M.</creator><creator>Puneetha, Peddathimula</creator><creator>Lee, Jung-Hee</creator><creator>Shim, Jaesool</creator><creator>Im, Ki-Sik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20190601</creationdate><title>Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule</title><author>Siva Pratap Reddy, M. ; Puneetha, Peddathimula ; Lee, Jung-Hee ; Shim, Jaesool ; Im, Ki-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2aa8232ba6cabc86637d8c6c2f98c5df2dbbf88069521a0809782b5b366145cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Biomolecules</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Light</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Photodiodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polarity</topic><topic>Salmon</topic><topic>Surfactants</topic><topic>Temperature</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siva Pratap Reddy, M.</creatorcontrib><creatorcontrib>Puneetha, Peddathimula</creatorcontrib><creatorcontrib>Lee, Jung-Hee</creatorcontrib><creatorcontrib>Shim, Jaesool</creatorcontrib><creatorcontrib>Im, Ki-Sik</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siva Pratap Reddy, M.</au><au>Puneetha, Peddathimula</au><au>Lee, Jung-Hee</au><au>Shim, Jaesool</au><au>Im, Ki-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>30</volume><issue>12</issue><spage>11771</spage><epage>11777</epage><pages>11771-11777</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and light-sensitive mechanism of polarity switching in metal/organic/n-GaN bio-hybrid photodiodes based on salmon DNA-cetyltrimethylammonium chloride (SDNA-surfactant). The SDNA-surfactant/n-GaN bio-hybrid temperature photodiode (Bio-HTPD) shows negative bias shift of current (I)–voltage (V) plots by 0.70 and 0.42 V compared to zero-bias at temperatures of 275 and 300 K, respectively, under light illumination. However, the I–V plots of the Bio-HTPD moved towards positive bias by 0.08 V compared to zero-bias at 325 K under light irradiation. This phenomenon resulted in electrically negative photocurrents up to room temperature, which remarkably switched to positive photocurrents at above room temperature. The temperature variations are closely associated with charge activation and unidirectional transport in the SDNA-surfactant biomolecule. Moreover, the change from negative to positive photocurrent could be related to high electron–hole pair generation at higher transition temperature. The formation of an energy band model with thermal hopping is proposed, which explains the reasonable charge transport mechanism.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-01542-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-06, Vol.30 (12), p.11771-11777
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2237767928
source Springer Nature - Complete Springer Journals
subjects Bias
Biomolecules
Characterization and Evaluation of Materials
Charge transport
Chemistry and Materials Science
Deoxyribonucleic acid
DNA
Light
Light irradiation
Materials Science
Optical and Electronic Materials
Photodiodes
Photoelectric effect
Photoelectric emission
Polarity
Salmon
Surfactants
Temperature
Transition temperature
title Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-%20and%20light-sensitive%20mechanism%20in%20metal/organic/n-GaN%20bio-hybrid%20temperature%20photodiode%20based%20on%20salmon%20DNA%20biomolecule&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Siva%20Pratap%20Reddy,%20M.&rft.date=2019-06-01&rft.volume=30&rft.issue=12&rft.spage=11771&rft.epage=11777&rft.pages=11771-11777&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-01542-3&rft_dat=%3Cproquest_cross%3E2237767928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237767928&rft_id=info:pmid/&rfr_iscdi=true