Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule
Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2019-06, Vol.30 (12), p.11771-11777 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11777 |
---|---|
container_issue | 12 |
container_start_page | 11771 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 30 |
creator | Siva Pratap Reddy, M. Puneetha, Peddathimula Lee, Jung-Hee Shim, Jaesool Im, Ki-Sik |
description | Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and light-sensitive mechanism of polarity switching in metal/organic/n-GaN bio-hybrid photodiodes based on salmon DNA-cetyltrimethylammonium chloride (SDNA-surfactant). The SDNA-surfactant/n-GaN bio-hybrid temperature photodiode (Bio-HTPD) shows negative bias shift of current (I)–voltage (V) plots by 0.70 and 0.42 V compared to zero-bias at temperatures of 275 and 300 K, respectively, under light illumination. However, the I–V plots of the Bio-HTPD moved towards positive bias by 0.08 V compared to zero-bias at 325 K under light irradiation. This phenomenon resulted in electrically negative photocurrents up to room temperature, which remarkably switched to positive photocurrents at above room temperature. The temperature variations are closely associated with charge activation and unidirectional transport in the SDNA-surfactant biomolecule. Moreover, the change from negative to positive photocurrent could be related to high electron–hole pair generation at higher transition temperature. The formation of an energy band model with thermal hopping is proposed, which explains the reasonable charge transport mechanism. |
doi_str_mv | 10.1007/s10854-019-01542-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2237767928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2237767928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2aa8232ba6cabc86637d8c6c2f98c5df2dbbf88069521a0809782b5b366145cd3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdWwek0xmKT6qUHRTwV3Ia9qUmUlNpkLX_nGjFdy5uBzu5Zxz4QPgkuBrgnE9ywRLXiFMmjK8oogdgQnhNUOVpG_HYIIbXqOKU3oKznLeYIxFxeQEfC59v_VJj7vkEdSDg11YrUeU_ZDDGD487L1d6yHkHoahLKPuZjGtysXOBjTXz9CEiNZ7k4KD418Z3K7jGF2IzkOjs3cwDjDrri9y93zznepj5-2u8-fgpNVd9he_OgWvD_fL20e0eJk_3d4skGWkGRHVWlJGjRZWGyuFYLWTVljaNtJy11JnTCslFg2nRGOJm1pSww0TglTcOjYFV4febYrvO59HtYm7NJSXilJW16JuqCwuenDZFHNOvlXbFHqd9opg9Q1bHWCrAlv9wFashNghlIt5WPn0V_1P6gsxVIQD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237767928</pqid></control><display><type>article</type><title>Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule</title><source>Springer Nature - Complete Springer Journals</source><creator>Siva Pratap Reddy, M. ; Puneetha, Peddathimula ; Lee, Jung-Hee ; Shim, Jaesool ; Im, Ki-Sik</creator><creatorcontrib>Siva Pratap Reddy, M. ; Puneetha, Peddathimula ; Lee, Jung-Hee ; Shim, Jaesool ; Im, Ki-Sik</creatorcontrib><description>Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and light-sensitive mechanism of polarity switching in metal/organic/n-GaN bio-hybrid photodiodes based on salmon DNA-cetyltrimethylammonium chloride (SDNA-surfactant). The SDNA-surfactant/n-GaN bio-hybrid temperature photodiode (Bio-HTPD) shows negative bias shift of current (I)–voltage (V) plots by 0.70 and 0.42 V compared to zero-bias at temperatures of 275 and 300 K, respectively, under light illumination. However, the I–V plots of the Bio-HTPD moved towards positive bias by 0.08 V compared to zero-bias at 325 K under light irradiation. This phenomenon resulted in electrically negative photocurrents up to room temperature, which remarkably switched to positive photocurrents at above room temperature. The temperature variations are closely associated with charge activation and unidirectional transport in the SDNA-surfactant biomolecule. Moreover, the change from negative to positive photocurrent could be related to high electron–hole pair generation at higher transition temperature. The formation of an energy band model with thermal hopping is proposed, which explains the reasonable charge transport mechanism.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-01542-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bias ; Biomolecules ; Characterization and Evaluation of Materials ; Charge transport ; Chemistry and Materials Science ; Deoxyribonucleic acid ; DNA ; Light ; Light irradiation ; Materials Science ; Optical and Electronic Materials ; Photodiodes ; Photoelectric effect ; Photoelectric emission ; Polarity ; Salmon ; Surfactants ; Temperature ; Transition temperature</subject><ispartof>Journal of materials science. Materials in electronics, 2019-06, Vol.30 (12), p.11771-11777</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2aa8232ba6cabc86637d8c6c2f98c5df2dbbf88069521a0809782b5b366145cd3</citedby><cites>FETCH-LOGICAL-c319t-2aa8232ba6cabc86637d8c6c2f98c5df2dbbf88069521a0809782b5b366145cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-01542-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-01542-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Siva Pratap Reddy, M.</creatorcontrib><creatorcontrib>Puneetha, Peddathimula</creatorcontrib><creatorcontrib>Lee, Jung-Hee</creatorcontrib><creatorcontrib>Shim, Jaesool</creatorcontrib><creatorcontrib>Im, Ki-Sik</creatorcontrib><title>Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and light-sensitive mechanism of polarity switching in metal/organic/n-GaN bio-hybrid photodiodes based on salmon DNA-cetyltrimethylammonium chloride (SDNA-surfactant). The SDNA-surfactant/n-GaN bio-hybrid temperature photodiode (Bio-HTPD) shows negative bias shift of current (I)–voltage (V) plots by 0.70 and 0.42 V compared to zero-bias at temperatures of 275 and 300 K, respectively, under light illumination. However, the I–V plots of the Bio-HTPD moved towards positive bias by 0.08 V compared to zero-bias at 325 K under light irradiation. This phenomenon resulted in electrically negative photocurrents up to room temperature, which remarkably switched to positive photocurrents at above room temperature. The temperature variations are closely associated with charge activation and unidirectional transport in the SDNA-surfactant biomolecule. Moreover, the change from negative to positive photocurrent could be related to high electron–hole pair generation at higher transition temperature. The formation of an energy band model with thermal hopping is proposed, which explains the reasonable charge transport mechanism.</description><subject>Bias</subject><subject>Biomolecules</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Light</subject><subject>Light irradiation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Photodiodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Polarity</subject><subject>Salmon</subject><subject>Surfactants</subject><subject>Temperature</subject><subject>Transition temperature</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdWwek0xmKT6qUHRTwV3Ia9qUmUlNpkLX_nGjFdy5uBzu5Zxz4QPgkuBrgnE9ywRLXiFMmjK8oogdgQnhNUOVpG_HYIIbXqOKU3oKznLeYIxFxeQEfC59v_VJj7vkEdSDg11YrUeU_ZDDGD487L1d6yHkHoahLKPuZjGtysXOBjTXz9CEiNZ7k4KD418Z3K7jGF2IzkOjs3cwDjDrri9y93zznepj5-2u8-fgpNVd9he_OgWvD_fL20e0eJk_3d4skGWkGRHVWlJGjRZWGyuFYLWTVljaNtJy11JnTCslFg2nRGOJm1pSww0TglTcOjYFV4febYrvO59HtYm7NJSXilJW16JuqCwuenDZFHNOvlXbFHqd9opg9Q1bHWCrAlv9wFashNghlIt5WPn0V_1P6gsxVIQD</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Siva Pratap Reddy, M.</creator><creator>Puneetha, Peddathimula</creator><creator>Lee, Jung-Hee</creator><creator>Shim, Jaesool</creator><creator>Im, Ki-Sik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20190601</creationdate><title>Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule</title><author>Siva Pratap Reddy, M. ; Puneetha, Peddathimula ; Lee, Jung-Hee ; Shim, Jaesool ; Im, Ki-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2aa8232ba6cabc86637d8c6c2f98c5df2dbbf88069521a0809782b5b366145cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Biomolecules</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Light</topic><topic>Light irradiation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Photodiodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Polarity</topic><topic>Salmon</topic><topic>Surfactants</topic><topic>Temperature</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siva Pratap Reddy, M.</creatorcontrib><creatorcontrib>Puneetha, Peddathimula</creatorcontrib><creatorcontrib>Lee, Jung-Hee</creatorcontrib><creatorcontrib>Shim, Jaesool</creatorcontrib><creatorcontrib>Im, Ki-Sik</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siva Pratap Reddy, M.</au><au>Puneetha, Peddathimula</au><au>Lee, Jung-Hee</au><au>Shim, Jaesool</au><au>Im, Ki-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>30</volume><issue>12</issue><spage>11771</spage><epage>11777</epage><pages>11771-11777</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Temperature-based organic–inorganic photodiodes have recently become attractive applications in branches of science and technology with eco-friendly and hybrid concepts. Here, we describe the use of salmon DNA (SDNA) biomolecules as temperature and light sensors. We demonstrate the temperature- and light-sensitive mechanism of polarity switching in metal/organic/n-GaN bio-hybrid photodiodes based on salmon DNA-cetyltrimethylammonium chloride (SDNA-surfactant). The SDNA-surfactant/n-GaN bio-hybrid temperature photodiode (Bio-HTPD) shows negative bias shift of current (I)–voltage (V) plots by 0.70 and 0.42 V compared to zero-bias at temperatures of 275 and 300 K, respectively, under light illumination. However, the I–V plots of the Bio-HTPD moved towards positive bias by 0.08 V compared to zero-bias at 325 K under light irradiation. This phenomenon resulted in electrically negative photocurrents up to room temperature, which remarkably switched to positive photocurrents at above room temperature. The temperature variations are closely associated with charge activation and unidirectional transport in the SDNA-surfactant biomolecule. Moreover, the change from negative to positive photocurrent could be related to high electron–hole pair generation at higher transition temperature. The formation of an energy band model with thermal hopping is proposed, which explains the reasonable charge transport mechanism.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-01542-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2019-06, Vol.30 (12), p.11771-11777 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2237767928 |
source | Springer Nature - Complete Springer Journals |
subjects | Bias Biomolecules Characterization and Evaluation of Materials Charge transport Chemistry and Materials Science Deoxyribonucleic acid DNA Light Light irradiation Materials Science Optical and Electronic Materials Photodiodes Photoelectric effect Photoelectric emission Polarity Salmon Surfactants Temperature Transition temperature |
title | Temperature- and light-sensitive mechanism in metal/organic/n-GaN bio-hybrid temperature photodiode based on salmon DNA biomolecule |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-%20and%20light-sensitive%20mechanism%20in%20metal/organic/n-GaN%20bio-hybrid%20temperature%20photodiode%20based%20on%20salmon%20DNA%20biomolecule&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Siva%20Pratap%20Reddy,%20M.&rft.date=2019-06-01&rft.volume=30&rft.issue=12&rft.spage=11771&rft.epage=11777&rft.pages=11771-11777&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-01542-3&rft_dat=%3Cproquest_cross%3E2237767928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237767928&rft_id=info:pmid/&rfr_iscdi=true |