Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material

This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2019-07, Vol.37 (13), p.3183-3191
Hauptverfasser: De Leonardis, Francesco, Soref, Richard, Passaro, Vittorio M. N., Yifei Zhang, Juejun Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3191
container_issue 13
container_start_page 3183
container_title Journal of lightwave technology
container_volume 37
creator De Leonardis, Francesco
Soref, Richard
Passaro, Vittorio M. N.
Yifei Zhang
Juejun Hu
description This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist of an asymmetric two-waveguide directional coupler and a symmetric three-waveguide directional coupler, in which the optical phase change material Ge 2 Sb 2 Se 4 Te 1 (GSST) is the top cladding layer for one of the silicon strip waveguides. Reversible crossbar switching is attained by the amorphous (Am) to crystalline (Cr) and Cr-to-Am phase transitions in the GSST induced by heating the GSST in contact with an indium tin oxide (ITO) microstrip through Joule heating. We examined device performance in terms of mid-band insertion loss (IL), crosstalk (CT), and 0.3-dB IL bandwidth (BW). The 2 × 2 results were IL = -0.018 dB, CT
doi_str_mv 10.1109/JLT.2019.2912669
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2237677200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8695044</ieee_id><sourcerecordid>2237677200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-506cb6cec5cc4cbf5db44ece76cb949890658ca7bb0cfac635a1723f584b6e193</originalsourceid><addsrcrecordid>eNotjUtLw0AYRQdRsFb3gpsB16nzfiw1tFWJVGi7lDAz_dKmxKTOpBT_vYG6unDu4V6E7imZUErs03uxmjBC7YRZypSyF2hEpTQZY5RfohHRnGdGM3GNblLaE0KFMHqEvl5i5zbetRs8bSD0scsWh74OrsF57FLyLuLlqe7DDhJep7rd4qI7ZcVQ4TmwpWdLECug-HPnEuB859ot4A_XQ6xdc4uuKtckuPvPMVrPpqv8NSsW87f8ucgCl6bPJFHBqwBBhiCCr-TGCwEB9ICtsMYSJU1w2nsSKhcUl45qxitphFdALR-jx_PuIXY_R0h9ue-OsR0uS8a4VlozQgbr4WzVAFAeYv3t4m9plJVECP4HfWFeDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237677200</pqid></control><display><type>article</type><title>Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material</title><source>IEEE Electronic Library (IEL)</source><creator>De Leonardis, Francesco ; Soref, Richard ; Passaro, Vittorio M. N. ; Yifei Zhang ; Juejun Hu</creator><creatorcontrib>De Leonardis, Francesco ; Soref, Richard ; Passaro, Vittorio M. N. ; Yifei Zhang ; Juejun Hu</creatorcontrib><description>This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist of an asymmetric two-waveguide directional coupler and a symmetric three-waveguide directional coupler, in which the optical phase change material Ge 2 Sb 2 Se 4 Te 1 (GSST) is the top cladding layer for one of the silicon strip waveguides. Reversible crossbar switching is attained by the amorphous (Am) to crystalline (Cr) and Cr-to-Am phase transitions in the GSST induced by heating the GSST in contact with an indium tin oxide (ITO) microstrip through Joule heating. We examined device performance in terms of mid-band insertion loss (IL), crosstalk (CT), and 0.3-dB IL bandwidth (BW). The 2 × 2 results were IL = -0.018 dB, CT &lt;; 31.3 dB, and BW = 58 nm for the coupling length Lc of 15.4 μm, and IL = 0.046 dB, CT &lt;; 38.1 dB, and BW = 70 nm for the coupling length Lc of 17.4 μm. Simulations of the 1 × 2 devices at 16.7-μm Lc revealed that IL = 0.083 dB and CT &lt;; 12.8 dB along with an expanded BW of 95 nm. Thermal simulations showed that a 5-V pulse train applied to 10 19 -cm -3 doped ITO would produce crystallization; however, the process of amorphization required a 24-V pulse of 2.9-μs duration to raise the GSST temperature above the melting temperature of 900 K.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2019.2912669</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphization ; Bandwidths ; Broadband ; Cladding ; Computer simulation ; Coupling ; Crosstalk ; Crystallization ; Directional coupler switches ; Directional couplers ; electro-optical switches ; Heating systems ; Indium tin oxide ; Indium tin oxides ; Insertion loss ; integrated photonic devices ; Melt temperature ; Ohmic dissipation ; Optical pulses ; Optical switches ; Optical switching ; optical switching devices ; Optical waveguides ; Phase change materials ; Phase transitions ; Resistance heating ; Silicon ; Switches ; Thermal simulation ; Waveguides</subject><ispartof>Journal of lightwave technology, 2019-07, Vol.37 (13), p.3183-3191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-506cb6cec5cc4cbf5db44ece76cb949890658ca7bb0cfac635a1723f584b6e193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8695044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8695044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Leonardis, Francesco</creatorcontrib><creatorcontrib>Soref, Richard</creatorcontrib><creatorcontrib>Passaro, Vittorio M. N.</creatorcontrib><creatorcontrib>Yifei Zhang</creatorcontrib><creatorcontrib>Juejun Hu</creatorcontrib><title>Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist of an asymmetric two-waveguide directional coupler and a symmetric three-waveguide directional coupler, in which the optical phase change material Ge 2 Sb 2 Se 4 Te 1 (GSST) is the top cladding layer for one of the silicon strip waveguides. Reversible crossbar switching is attained by the amorphous (Am) to crystalline (Cr) and Cr-to-Am phase transitions in the GSST induced by heating the GSST in contact with an indium tin oxide (ITO) microstrip through Joule heating. We examined device performance in terms of mid-band insertion loss (IL), crosstalk (CT), and 0.3-dB IL bandwidth (BW). The 2 × 2 results were IL = -0.018 dB, CT &lt;; 31.3 dB, and BW = 58 nm for the coupling length Lc of 15.4 μm, and IL = 0.046 dB, CT &lt;; 38.1 dB, and BW = 70 nm for the coupling length Lc of 17.4 μm. Simulations of the 1 × 2 devices at 16.7-μm Lc revealed that IL = 0.083 dB and CT &lt;; 12.8 dB along with an expanded BW of 95 nm. Thermal simulations showed that a 5-V pulse train applied to 10 19 -cm -3 doped ITO would produce crystallization; however, the process of amorphization required a 24-V pulse of 2.9-μs duration to raise the GSST temperature above the melting temperature of 900 K.</description><subject>Amorphization</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Cladding</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Crosstalk</subject><subject>Crystallization</subject><subject>Directional coupler switches</subject><subject>Directional couplers</subject><subject>electro-optical switches</subject><subject>Heating systems</subject><subject>Indium tin oxide</subject><subject>Indium tin oxides</subject><subject>Insertion loss</subject><subject>integrated photonic devices</subject><subject>Melt temperature</subject><subject>Ohmic dissipation</subject><subject>Optical pulses</subject><subject>Optical switches</subject><subject>Optical switching</subject><subject>optical switching devices</subject><subject>Optical waveguides</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Resistance heating</subject><subject>Silicon</subject><subject>Switches</subject><subject>Thermal simulation</subject><subject>Waveguides</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjUtLw0AYRQdRsFb3gpsB16nzfiw1tFWJVGi7lDAz_dKmxKTOpBT_vYG6unDu4V6E7imZUErs03uxmjBC7YRZypSyF2hEpTQZY5RfohHRnGdGM3GNblLaE0KFMHqEvl5i5zbetRs8bSD0scsWh74OrsF57FLyLuLlqe7DDhJep7rd4qI7ZcVQ4TmwpWdLECug-HPnEuB859ot4A_XQ6xdc4uuKtckuPvPMVrPpqv8NSsW87f8ucgCl6bPJFHBqwBBhiCCr-TGCwEB9ICtsMYSJU1w2nsSKhcUl45qxitphFdALR-jx_PuIXY_R0h9ue-OsR0uS8a4VlozQgbr4WzVAFAeYv3t4m9plJVECP4HfWFeDw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>De Leonardis, Francesco</creator><creator>Soref, Richard</creator><creator>Passaro, Vittorio M. N.</creator><creator>Yifei Zhang</creator><creator>Juejun Hu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190701</creationdate><title>Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material</title><author>De Leonardis, Francesco ; Soref, Richard ; Passaro, Vittorio M. N. ; Yifei Zhang ; Juejun Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-506cb6cec5cc4cbf5db44ece76cb949890658ca7bb0cfac635a1723f584b6e193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphization</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Cladding</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Crosstalk</topic><topic>Crystallization</topic><topic>Directional coupler switches</topic><topic>Directional couplers</topic><topic>electro-optical switches</topic><topic>Heating systems</topic><topic>Indium tin oxide</topic><topic>Indium tin oxides</topic><topic>Insertion loss</topic><topic>integrated photonic devices</topic><topic>Melt temperature</topic><topic>Ohmic dissipation</topic><topic>Optical pulses</topic><topic>Optical switches</topic><topic>Optical switching</topic><topic>optical switching devices</topic><topic>Optical waveguides</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Resistance heating</topic><topic>Silicon</topic><topic>Switches</topic><topic>Thermal simulation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Leonardis, Francesco</creatorcontrib><creatorcontrib>Soref, Richard</creatorcontrib><creatorcontrib>Passaro, Vittorio M. N.</creatorcontrib><creatorcontrib>Yifei Zhang</creatorcontrib><creatorcontrib>Juejun Hu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Leonardis, Francesco</au><au>Soref, Richard</au><au>Passaro, Vittorio M. N.</au><au>Yifei Zhang</au><au>Juejun Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>37</volume><issue>13</issue><spage>3183</spage><epage>3191</epage><pages>3183-3191</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist of an asymmetric two-waveguide directional coupler and a symmetric three-waveguide directional coupler, in which the optical phase change material Ge 2 Sb 2 Se 4 Te 1 (GSST) is the top cladding layer for one of the silicon strip waveguides. Reversible crossbar switching is attained by the amorphous (Am) to crystalline (Cr) and Cr-to-Am phase transitions in the GSST induced by heating the GSST in contact with an indium tin oxide (ITO) microstrip through Joule heating. We examined device performance in terms of mid-band insertion loss (IL), crosstalk (CT), and 0.3-dB IL bandwidth (BW). The 2 × 2 results were IL = -0.018 dB, CT &lt;; 31.3 dB, and BW = 58 nm for the coupling length Lc of 15.4 μm, and IL = 0.046 dB, CT &lt;; 38.1 dB, and BW = 70 nm for the coupling length Lc of 17.4 μm. Simulations of the 1 × 2 devices at 16.7-μm Lc revealed that IL = 0.083 dB and CT &lt;; 12.8 dB along with an expanded BW of 95 nm. Thermal simulations showed that a 5-V pulse train applied to 10 19 -cm -3 doped ITO would produce crystallization; however, the process of amorphization required a 24-V pulse of 2.9-μs duration to raise the GSST temperature above the melting temperature of 900 K.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2019.2912669</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2019-07, Vol.37 (13), p.3183-3191
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2237677200
source IEEE Electronic Library (IEL)
subjects Amorphization
Bandwidths
Broadband
Cladding
Computer simulation
Coupling
Crosstalk
Crystallization
Directional coupler switches
Directional couplers
electro-optical switches
Heating systems
Indium tin oxide
Indium tin oxides
Insertion loss
integrated photonic devices
Melt temperature
Ohmic dissipation
Optical pulses
Optical switches
Optical switching
optical switching devices
Optical waveguides
Phase change materials
Phase transitions
Resistance heating
Silicon
Switches
Thermal simulation
Waveguides
title Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Electro-Optical%20Crossbar%20Switches%20Using%20Low-Loss%20Ge2Sb2Se4Te1%20Phase%20Change%20Material&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=De%20Leonardis,%20Francesco&rft.date=2019-07-01&rft.volume=37&rft.issue=13&rft.spage=3183&rft.epage=3191&rft.pages=3183-3191&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2019.2912669&rft_dat=%3Cproquest_RIE%3E2237677200%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237677200&rft_id=info:pmid/&rft_ieee_id=8695044&rfr_iscdi=true