Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material
This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2019-07, Vol.37 (13), p.3183-3191 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3191 |
---|---|
container_issue | 13 |
container_start_page | 3183 |
container_title | Journal of lightwave technology |
container_volume | 37 |
creator | De Leonardis, Francesco Soref, Richard Passaro, Vittorio M. N. Yifei Zhang Juejun Hu |
description | This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist of an asymmetric two-waveguide directional coupler and a symmetric three-waveguide directional coupler, in which the optical phase change material Ge 2 Sb 2 Se 4 Te 1 (GSST) is the top cladding layer for one of the silicon strip waveguides. Reversible crossbar switching is attained by the amorphous (Am) to crystalline (Cr) and Cr-to-Am phase transitions in the GSST induced by heating the GSST in contact with an indium tin oxide (ITO) microstrip through Joule heating. We examined device performance in terms of mid-band insertion loss (IL), crosstalk (CT), and 0.3-dB IL bandwidth (BW). The 2 × 2 results were IL = -0.018 dB, CT |
doi_str_mv | 10.1109/JLT.2019.2912669 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2237677200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8695044</ieee_id><sourcerecordid>2237677200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-506cb6cec5cc4cbf5db44ece76cb949890658ca7bb0cfac635a1723f584b6e193</originalsourceid><addsrcrecordid>eNotjUtLw0AYRQdRsFb3gpsB16nzfiw1tFWJVGi7lDAz_dKmxKTOpBT_vYG6unDu4V6E7imZUErs03uxmjBC7YRZypSyF2hEpTQZY5RfohHRnGdGM3GNblLaE0KFMHqEvl5i5zbetRs8bSD0scsWh74OrsF57FLyLuLlqe7DDhJep7rd4qI7ZcVQ4TmwpWdLECug-HPnEuB859ot4A_XQ6xdc4uuKtckuPvPMVrPpqv8NSsW87f8ucgCl6bPJFHBqwBBhiCCr-TGCwEB9ICtsMYSJU1w2nsSKhcUl45qxitphFdALR-jx_PuIXY_R0h9ue-OsR0uS8a4VlozQgbr4WzVAFAeYv3t4m9plJVECP4HfWFeDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237677200</pqid></control><display><type>article</type><title>Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material</title><source>IEEE Electronic Library (IEL)</source><creator>De Leonardis, Francesco ; Soref, Richard ; Passaro, Vittorio M. N. ; Yifei Zhang ; Juejun Hu</creator><creatorcontrib>De Leonardis, Francesco ; Soref, Richard ; Passaro, Vittorio M. N. ; Yifei Zhang ; Juejun Hu</creatorcontrib><description>This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist of an asymmetric two-waveguide directional coupler and a symmetric three-waveguide directional coupler, in which the optical phase change material Ge 2 Sb 2 Se 4 Te 1 (GSST) is the top cladding layer for one of the silicon strip waveguides. Reversible crossbar switching is attained by the amorphous (Am) to crystalline (Cr) and Cr-to-Am phase transitions in the GSST induced by heating the GSST in contact with an indium tin oxide (ITO) microstrip through Joule heating. We examined device performance in terms of mid-band insertion loss (IL), crosstalk (CT), and 0.3-dB IL bandwidth (BW). The 2 × 2 results were IL = -0.018 dB, CT <; 31.3 dB, and BW = 58 nm for the coupling length Lc of 15.4 μm, and IL = 0.046 dB, CT <; 38.1 dB, and BW = 70 nm for the coupling length Lc of 17.4 μm. Simulations of the 1 × 2 devices at 16.7-μm Lc revealed that IL = 0.083 dB and CT <; 12.8 dB along with an expanded BW of 95 nm. Thermal simulations showed that a 5-V pulse train applied to 10 19 -cm -3 doped ITO would produce crystallization; however, the process of amorphization required a 24-V pulse of 2.9-μs duration to raise the GSST temperature above the melting temperature of 900 K.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2019.2912669</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphization ; Bandwidths ; Broadband ; Cladding ; Computer simulation ; Coupling ; Crosstalk ; Crystallization ; Directional coupler switches ; Directional couplers ; electro-optical switches ; Heating systems ; Indium tin oxide ; Indium tin oxides ; Insertion loss ; integrated photonic devices ; Melt temperature ; Ohmic dissipation ; Optical pulses ; Optical switches ; Optical switching ; optical switching devices ; Optical waveguides ; Phase change materials ; Phase transitions ; Resistance heating ; Silicon ; Switches ; Thermal simulation ; Waveguides</subject><ispartof>Journal of lightwave technology, 2019-07, Vol.37 (13), p.3183-3191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-506cb6cec5cc4cbf5db44ece76cb949890658ca7bb0cfac635a1723f584b6e193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8695044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8695044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Leonardis, Francesco</creatorcontrib><creatorcontrib>Soref, Richard</creatorcontrib><creatorcontrib>Passaro, Vittorio M. N.</creatorcontrib><creatorcontrib>Yifei Zhang</creatorcontrib><creatorcontrib>Juejun Hu</creatorcontrib><title>Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist of an asymmetric two-waveguide directional coupler and a symmetric three-waveguide directional coupler, in which the optical phase change material Ge 2 Sb 2 Se 4 Te 1 (GSST) is the top cladding layer for one of the silicon strip waveguides. Reversible crossbar switching is attained by the amorphous (Am) to crystalline (Cr) and Cr-to-Am phase transitions in the GSST induced by heating the GSST in contact with an indium tin oxide (ITO) microstrip through Joule heating. We examined device performance in terms of mid-band insertion loss (IL), crosstalk (CT), and 0.3-dB IL bandwidth (BW). The 2 × 2 results were IL = -0.018 dB, CT <; 31.3 dB, and BW = 58 nm for the coupling length Lc of 15.4 μm, and IL = 0.046 dB, CT <; 38.1 dB, and BW = 70 nm for the coupling length Lc of 17.4 μm. Simulations of the 1 × 2 devices at 16.7-μm Lc revealed that IL = 0.083 dB and CT <; 12.8 dB along with an expanded BW of 95 nm. Thermal simulations showed that a 5-V pulse train applied to 10 19 -cm -3 doped ITO would produce crystallization; however, the process of amorphization required a 24-V pulse of 2.9-μs duration to raise the GSST temperature above the melting temperature of 900 K.</description><subject>Amorphization</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Cladding</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Crosstalk</subject><subject>Crystallization</subject><subject>Directional coupler switches</subject><subject>Directional couplers</subject><subject>electro-optical switches</subject><subject>Heating systems</subject><subject>Indium tin oxide</subject><subject>Indium tin oxides</subject><subject>Insertion loss</subject><subject>integrated photonic devices</subject><subject>Melt temperature</subject><subject>Ohmic dissipation</subject><subject>Optical pulses</subject><subject>Optical switches</subject><subject>Optical switching</subject><subject>optical switching devices</subject><subject>Optical waveguides</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Resistance heating</subject><subject>Silicon</subject><subject>Switches</subject><subject>Thermal simulation</subject><subject>Waveguides</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjUtLw0AYRQdRsFb3gpsB16nzfiw1tFWJVGi7lDAz_dKmxKTOpBT_vYG6unDu4V6E7imZUErs03uxmjBC7YRZypSyF2hEpTQZY5RfohHRnGdGM3GNblLaE0KFMHqEvl5i5zbetRs8bSD0scsWh74OrsF57FLyLuLlqe7DDhJep7rd4qI7ZcVQ4TmwpWdLECug-HPnEuB859ot4A_XQ6xdc4uuKtckuPvPMVrPpqv8NSsW87f8ucgCl6bPJFHBqwBBhiCCr-TGCwEB9ICtsMYSJU1w2nsSKhcUl45qxitphFdALR-jx_PuIXY_R0h9ue-OsR0uS8a4VlozQgbr4WzVAFAeYv3t4m9plJVECP4HfWFeDw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>De Leonardis, Francesco</creator><creator>Soref, Richard</creator><creator>Passaro, Vittorio M. N.</creator><creator>Yifei Zhang</creator><creator>Juejun Hu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190701</creationdate><title>Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material</title><author>De Leonardis, Francesco ; Soref, Richard ; Passaro, Vittorio M. N. ; Yifei Zhang ; Juejun Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-506cb6cec5cc4cbf5db44ece76cb949890658ca7bb0cfac635a1723f584b6e193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphization</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Cladding</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Crosstalk</topic><topic>Crystallization</topic><topic>Directional coupler switches</topic><topic>Directional couplers</topic><topic>electro-optical switches</topic><topic>Heating systems</topic><topic>Indium tin oxide</topic><topic>Indium tin oxides</topic><topic>Insertion loss</topic><topic>integrated photonic devices</topic><topic>Melt temperature</topic><topic>Ohmic dissipation</topic><topic>Optical pulses</topic><topic>Optical switches</topic><topic>Optical switching</topic><topic>optical switching devices</topic><topic>Optical waveguides</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Resistance heating</topic><topic>Silicon</topic><topic>Switches</topic><topic>Thermal simulation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Leonardis, Francesco</creatorcontrib><creatorcontrib>Soref, Richard</creatorcontrib><creatorcontrib>Passaro, Vittorio M. N.</creatorcontrib><creatorcontrib>Yifei Zhang</creatorcontrib><creatorcontrib>Juejun Hu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Leonardis, Francesco</au><au>Soref, Richard</au><au>Passaro, Vittorio M. N.</au><au>Yifei Zhang</au><au>Juejun Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>37</volume><issue>13</issue><spage>3183</spage><epage>3191</epage><pages>3183-3191</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist of an asymmetric two-waveguide directional coupler and a symmetric three-waveguide directional coupler, in which the optical phase change material Ge 2 Sb 2 Se 4 Te 1 (GSST) is the top cladding layer for one of the silicon strip waveguides. Reversible crossbar switching is attained by the amorphous (Am) to crystalline (Cr) and Cr-to-Am phase transitions in the GSST induced by heating the GSST in contact with an indium tin oxide (ITO) microstrip through Joule heating. We examined device performance in terms of mid-band insertion loss (IL), crosstalk (CT), and 0.3-dB IL bandwidth (BW). The 2 × 2 results were IL = -0.018 dB, CT <; 31.3 dB, and BW = 58 nm for the coupling length Lc of 15.4 μm, and IL = 0.046 dB, CT <; 38.1 dB, and BW = 70 nm for the coupling length Lc of 17.4 μm. Simulations of the 1 × 2 devices at 16.7-μm Lc revealed that IL = 0.083 dB and CT <; 12.8 dB along with an expanded BW of 95 nm. Thermal simulations showed that a 5-V pulse train applied to 10 19 -cm -3 doped ITO would produce crystallization; however, the process of amorphization required a 24-V pulse of 2.9-μs duration to raise the GSST temperature above the melting temperature of 900 K.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2019.2912669</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2019-07, Vol.37 (13), p.3183-3191 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_2237677200 |
source | IEEE Electronic Library (IEL) |
subjects | Amorphization Bandwidths Broadband Cladding Computer simulation Coupling Crosstalk Crystallization Directional coupler switches Directional couplers electro-optical switches Heating systems Indium tin oxide Indium tin oxides Insertion loss integrated photonic devices Melt temperature Ohmic dissipation Optical pulses Optical switches Optical switching optical switching devices Optical waveguides Phase change materials Phase transitions Resistance heating Silicon Switches Thermal simulation Waveguides |
title | Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Electro-Optical%20Crossbar%20Switches%20Using%20Low-Loss%20Ge2Sb2Se4Te1%20Phase%20Change%20Material&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=De%20Leonardis,%20Francesco&rft.date=2019-07-01&rft.volume=37&rft.issue=13&rft.spage=3183&rft.epage=3191&rft.pages=3183-3191&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2019.2912669&rft_dat=%3Cproquest_RIE%3E2237677200%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237677200&rft_id=info:pmid/&rft_ieee_id=8695044&rfr_iscdi=true |