Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material
This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2019-07, Vol.37 (13), p.3183-3191 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This theoretical modeling and simulation paper presents designs and projected performance of non-volatile broadband on-chip 1 × 2 and 2 × 2 electro-optical switches operating in the telecommunication C-band and based on the silicon-on-insulator technological platform. These optical switches consist of an asymmetric two-waveguide directional coupler and a symmetric three-waveguide directional coupler, in which the optical phase change material Ge 2 Sb 2 Se 4 Te 1 (GSST) is the top cladding layer for one of the silicon strip waveguides. Reversible crossbar switching is attained by the amorphous (Am) to crystalline (Cr) and Cr-to-Am phase transitions in the GSST induced by heating the GSST in contact with an indium tin oxide (ITO) microstrip through Joule heating. We examined device performance in terms of mid-band insertion loss (IL), crosstalk (CT), and 0.3-dB IL bandwidth (BW). The 2 × 2 results were IL = -0.018 dB, CT |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2019.2912669 |