Synthesis characterization, optical and electrical properties of polyvinyl alcohol/multi-walled carbon nanotube nanocomposites: A composition dependence study
[Display omitted] •PVA/MWCNT nanocomposites have been synthesized by simple and low cost method.•Good interaction between MWCNT and PVA molecular chains.•Linear decrease of the nanocomposites band gap with MWCNT content.•Improved electrical properties have been obtained by adding MWCNT.•A percolatio...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2019-04, Vol.243, p.125-130 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | |
container_start_page | 125 |
container_title | Materials science & engineering. B, Solid-state materials for advanced technology |
container_volume | 243 |
creator | Chebil, Achref Ben Doudou, Bessem Dridi, Chérif Dammak, Mohamed |
description | [Display omitted]
•PVA/MWCNT nanocomposites have been synthesized by simple and low cost method.•Good interaction between MWCNT and PVA molecular chains.•Linear decrease of the nanocomposites band gap with MWCNT content.•Improved electrical properties have been obtained by adding MWCNT.•A percolation threshold was obtained at about 4 wt% of MWCNT.•The I-V characteristics have been simulated by the back to back Schottky models.•The ideality factors and barrier heights was calculated.
Polyvinyl alcohol (PVA)/multi-walled carbon nanotubes (MWCNT) nanocomposites based films were synthesized by a facile pathway (solution casting method) with different weight ratios of MWCNT (0 wt%, 1 wt%, 3 wt%, 4 wt% and 5 wt%). FTIR measurements confirmed the interaction between MWCNT and PVA molecular chains. From UV–Visible spectroscopy study, the band gaps of PVA/MWCNT nanocomposites were calculated and we have observed a linear decrease with MWCNT addition. Photoluminescence (PL) spectroscopy study showed that the PVA emission is dominated by a broad band around 400 nm and decreases with MWCNTs content. The analysis of I-V characteristics shows an important current increase with MWCNT addition with a percolation threshold at about 4 wt%. Moreover, they have been simulated successfully with the established theory and have shown an ideality factor close to 1. These nanocomposites could be considered as promising candidates to be used in future nanotechnology based devices. |
doi_str_mv | 10.1016/j.mseb.2019.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2237563037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510719300893</els_id><sourcerecordid>2237563037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-51e3794eae01880fd92e4e5ad1247079e119081f7769343cc6f17d9fa6b8395e3</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCRWBJ-gJMlrszErx2PEZcoCg8pEgfgbHntHq1XXnuwPUGTj8m34s3ClVN3SVXdXV0IvaWkp4QO14f-WGDXM0JVT0RPiHiBNnSUvBNKiJdoQxSj3ZYS-Qq9LuVACKGMsQ16-r7GuofiC7Z7k42tkP2jqT7F9zjN1VsTsIkOQwBb8zOcc5ohVw8FpwnPKawPPq6NFmzap3B9XEL13W8TAjhsTd6liKOJqS47eG5sOs6p-ArlA77B_1BbiR3MEB1EC7jUxa1X6GIyocCbv_US_fx09-P2S3f_7fPX25v7znI21mYMuFQCDBA6jmRyioGArXGUCUmkAkoVGekk5aC44NYOE5VOTWbYjVxtgV-id-e5zduvBUrVh7Tk2FZqxrjcDpxw2VjszLI5lZJh0nP2R5NXTYk-5aAP-pSDPuWgidAthyb6eBZBu__BQ9bF-pND53N7qXbJ_0_-BxB5laM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237563037</pqid></control><display><type>article</type><title>Synthesis characterization, optical and electrical properties of polyvinyl alcohol/multi-walled carbon nanotube nanocomposites: A composition dependence study</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chebil, Achref ; Ben Doudou, Bessem ; Dridi, Chérif ; Dammak, Mohamed</creator><creatorcontrib>Chebil, Achref ; Ben Doudou, Bessem ; Dridi, Chérif ; Dammak, Mohamed</creatorcontrib><description>[Display omitted]
•PVA/MWCNT nanocomposites have been synthesized by simple and low cost method.•Good interaction between MWCNT and PVA molecular chains.•Linear decrease of the nanocomposites band gap with MWCNT content.•Improved electrical properties have been obtained by adding MWCNT.•A percolation threshold was obtained at about 4 wt% of MWCNT.•The I-V characteristics have been simulated by the back to back Schottky models.•The ideality factors and barrier heights was calculated.
Polyvinyl alcohol (PVA)/multi-walled carbon nanotubes (MWCNT) nanocomposites based films were synthesized by a facile pathway (solution casting method) with different weight ratios of MWCNT (0 wt%, 1 wt%, 3 wt%, 4 wt% and 5 wt%). FTIR measurements confirmed the interaction between MWCNT and PVA molecular chains. From UV–Visible spectroscopy study, the band gaps of PVA/MWCNT nanocomposites were calculated and we have observed a linear decrease with MWCNT addition. Photoluminescence (PL) spectroscopy study showed that the PVA emission is dominated by a broad band around 400 nm and decreases with MWCNTs content. The analysis of I-V characteristics shows an important current increase with MWCNT addition with a percolation threshold at about 4 wt%. Moreover, they have been simulated successfully with the established theory and have shown an ideality factor close to 1. These nanocomposites could be considered as promising candidates to be used in future nanotechnology based devices.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2019.04.004</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Current voltage characteristics ; Dependence ; Electrical properties ; Emission analysis ; Free-standing films ; FTIR study ; Molecular chains ; Multi wall carbon nanotubes ; Nanocomposites ; Nanotechnology ; Optical properties ; Percolation ; Photoluminescence ; Polyvinyl alcohol ; Solution casting ; Spectroscopic analysis ; Spectrum analysis</subject><ispartof>Materials science & engineering. B, Solid-state materials for advanced technology, 2019-04, Vol.243, p.125-130</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-51e3794eae01880fd92e4e5ad1247079e119081f7769343cc6f17d9fa6b8395e3</citedby><cites>FETCH-LOGICAL-c328t-51e3794eae01880fd92e4e5ad1247079e119081f7769343cc6f17d9fa6b8395e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921510719300893$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Chebil, Achref</creatorcontrib><creatorcontrib>Ben Doudou, Bessem</creatorcontrib><creatorcontrib>Dridi, Chérif</creatorcontrib><creatorcontrib>Dammak, Mohamed</creatorcontrib><title>Synthesis characterization, optical and electrical properties of polyvinyl alcohol/multi-walled carbon nanotube nanocomposites: A composition dependence study</title><title>Materials science & engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted]
•PVA/MWCNT nanocomposites have been synthesized by simple and low cost method.•Good interaction between MWCNT and PVA molecular chains.•Linear decrease of the nanocomposites band gap with MWCNT content.•Improved electrical properties have been obtained by adding MWCNT.•A percolation threshold was obtained at about 4 wt% of MWCNT.•The I-V characteristics have been simulated by the back to back Schottky models.•The ideality factors and barrier heights was calculated.
Polyvinyl alcohol (PVA)/multi-walled carbon nanotubes (MWCNT) nanocomposites based films were synthesized by a facile pathway (solution casting method) with different weight ratios of MWCNT (0 wt%, 1 wt%, 3 wt%, 4 wt% and 5 wt%). FTIR measurements confirmed the interaction between MWCNT and PVA molecular chains. From UV–Visible spectroscopy study, the band gaps of PVA/MWCNT nanocomposites were calculated and we have observed a linear decrease with MWCNT addition. Photoluminescence (PL) spectroscopy study showed that the PVA emission is dominated by a broad band around 400 nm and decreases with MWCNTs content. The analysis of I-V characteristics shows an important current increase with MWCNT addition with a percolation threshold at about 4 wt%. Moreover, they have been simulated successfully with the established theory and have shown an ideality factor close to 1. These nanocomposites could be considered as promising candidates to be used in future nanotechnology based devices.</description><subject>Current voltage characteristics</subject><subject>Dependence</subject><subject>Electrical properties</subject><subject>Emission analysis</subject><subject>Free-standing films</subject><subject>FTIR study</subject><subject>Molecular chains</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Optical properties</subject><subject>Percolation</subject><subject>Photoluminescence</subject><subject>Polyvinyl alcohol</subject><subject>Solution casting</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UctuFDEQtBCRWBJ-gJMlrszErx2PEZcoCg8pEgfgbHntHq1XXnuwPUGTj8m34s3ClVN3SVXdXV0IvaWkp4QO14f-WGDXM0JVT0RPiHiBNnSUvBNKiJdoQxSj3ZYS-Qq9LuVACKGMsQ16-r7GuofiC7Z7k42tkP2jqT7F9zjN1VsTsIkOQwBb8zOcc5ohVw8FpwnPKawPPq6NFmzap3B9XEL13W8TAjhsTd6liKOJqS47eG5sOs6p-ArlA77B_1BbiR3MEB1EC7jUxa1X6GIyocCbv_US_fx09-P2S3f_7fPX25v7znI21mYMuFQCDBA6jmRyioGArXGUCUmkAkoVGekk5aC44NYOE5VOTWbYjVxtgV-id-e5zduvBUrVh7Tk2FZqxrjcDpxw2VjszLI5lZJh0nP2R5NXTYk-5aAP-pSDPuWgidAthyb6eBZBu__BQ9bF-pND53N7qXbJ_0_-BxB5laM</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Chebil, Achref</creator><creator>Ben Doudou, Bessem</creator><creator>Dridi, Chérif</creator><creator>Dammak, Mohamed</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201904</creationdate><title>Synthesis characterization, optical and electrical properties of polyvinyl alcohol/multi-walled carbon nanotube nanocomposites: A composition dependence study</title><author>Chebil, Achref ; Ben Doudou, Bessem ; Dridi, Chérif ; Dammak, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-51e3794eae01880fd92e4e5ad1247079e119081f7769343cc6f17d9fa6b8395e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Current voltage characteristics</topic><topic>Dependence</topic><topic>Electrical properties</topic><topic>Emission analysis</topic><topic>Free-standing films</topic><topic>FTIR study</topic><topic>Molecular chains</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Optical properties</topic><topic>Percolation</topic><topic>Photoluminescence</topic><topic>Polyvinyl alcohol</topic><topic>Solution casting</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chebil, Achref</creatorcontrib><creatorcontrib>Ben Doudou, Bessem</creatorcontrib><creatorcontrib>Dridi, Chérif</creatorcontrib><creatorcontrib>Dammak, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chebil, Achref</au><au>Ben Doudou, Bessem</au><au>Dridi, Chérif</au><au>Dammak, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis characterization, optical and electrical properties of polyvinyl alcohol/multi-walled carbon nanotube nanocomposites: A composition dependence study</atitle><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle><date>2019-04</date><risdate>2019</risdate><volume>243</volume><spage>125</spage><epage>130</epage><pages>125-130</pages><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>[Display omitted]
•PVA/MWCNT nanocomposites have been synthesized by simple and low cost method.•Good interaction between MWCNT and PVA molecular chains.•Linear decrease of the nanocomposites band gap with MWCNT content.•Improved electrical properties have been obtained by adding MWCNT.•A percolation threshold was obtained at about 4 wt% of MWCNT.•The I-V characteristics have been simulated by the back to back Schottky models.•The ideality factors and barrier heights was calculated.
Polyvinyl alcohol (PVA)/multi-walled carbon nanotubes (MWCNT) nanocomposites based films were synthesized by a facile pathway (solution casting method) with different weight ratios of MWCNT (0 wt%, 1 wt%, 3 wt%, 4 wt% and 5 wt%). FTIR measurements confirmed the interaction between MWCNT and PVA molecular chains. From UV–Visible spectroscopy study, the band gaps of PVA/MWCNT nanocomposites were calculated and we have observed a linear decrease with MWCNT addition. Photoluminescence (PL) spectroscopy study showed that the PVA emission is dominated by a broad band around 400 nm and decreases with MWCNTs content. The analysis of I-V characteristics shows an important current increase with MWCNT addition with a percolation threshold at about 4 wt%. Moreover, they have been simulated successfully with the established theory and have shown an ideality factor close to 1. These nanocomposites could be considered as promising candidates to be used in future nanotechnology based devices.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2019.04.004</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5107 |
ispartof | Materials science & engineering. B, Solid-state materials for advanced technology, 2019-04, Vol.243, p.125-130 |
issn | 0921-5107 1873-4944 |
language | eng |
recordid | cdi_proquest_journals_2237563037 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Current voltage characteristics Dependence Electrical properties Emission analysis Free-standing films FTIR study Molecular chains Multi wall carbon nanotubes Nanocomposites Nanotechnology Optical properties Percolation Photoluminescence Polyvinyl alcohol Solution casting Spectroscopic analysis Spectrum analysis |
title | Synthesis characterization, optical and electrical properties of polyvinyl alcohol/multi-walled carbon nanotube nanocomposites: A composition dependence study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20characterization,%20optical%20and%20electrical%20properties%20of%20polyvinyl%20alcohol/multi-walled%20carbon%20nanotube%20nanocomposites:%20A%20composition%20dependence%20study&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Chebil,%20Achref&rft.date=2019-04&rft.volume=243&rft.spage=125&rft.epage=130&rft.pages=125-130&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2019.04.004&rft_dat=%3Cproquest_cross%3E2237563037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237563037&rft_id=info:pmid/&rft_els_id=S0921510719300893&rfr_iscdi=true |